NYCHA迅速回应的一个关键例子是修正了租金困难方案,这项政策旨在解决突然的收入损失。在进行COVID之前,该政策依靠临时重新认证过程,该过程耗时耗时,居民经常需要房地产管理办公室中的住房助理提供人员援助。公共住房租赁管理团队和租赁住房部重新设计了面对自助门户的客户,以简化所需的信息并与信息技术一起使用,并与客户联络中心(CCC)一起创建一个脚本,以允许居民要求通过电话更改租金。从2020年4月到2020年7月,NYCHA处理了13,258租用艰苦的要求。这比同一时期的2019年要求增加了近450%。
介绍了季节性地下储能系统的最佳设计。本研究包括在 100 至 500 m 深度范围内使用天然结构的可能性。出于安全原因,考虑的储能流体是初始温度为 90 ◦ C 的水。使用收集到的土壤热性能数据进行了有限元法模拟。作为该方法的一个实际示例,对在西班牙阿维拉地区收集的数据进行了分析。使用在该区域测量的数据生成了温度-深度图。通过从地面进行的电磁场扩散技术获得了地下物质组成的 3D 模型。这允许分析可用的储能策略解决方案,这些解决方案根据现场的具体条件量身定制,具有足够的精度,无需进行深挖即可进行初步评估。本研究显示了交替的沙子和粘土区域,其中天然结构可在 500 m 深度范围内使用。考虑了水的热性能取决于温度和压力。各种尺寸配置表明,在圆柱形几何结构中,半径超过 2 米的存储系统在每单位质量存储的能量方面并不提供显著的优势。与被沙子包围然后在存储 6 个月后再被粘土包围的空腔相比,粘土包裹的优势显而易见。根据地下温度和运输存储液体所需的能量,结果表明,在 50 米到 100 米的深度之间,热性能并没有显著改善。然而,在 100 米到 200 米之间取得了明显的改善,从那里到 500 米,改善可以忽略不计。分析了几种用于容纳存储液体和用于热隔离的材料。对于超过 14 天的时间,热塑性塑料的热性能是相关的,如在模拟中表现出最佳性能的丙烯腈-苯乙烯-丙烯酸酯的情况。在最佳配置下,可以看到,通过将水储存在 90 ◦ C(在 1 月至 2 月期间与环境温度下的典型系统进行交换可获得 138.78 kJ/kg),与将水储存在地下温度 25 ◦ C(获得 77.08 kJ/kg)的情况相比,每公斤储水可以储存 1.8 倍的能量,而不会影响周围介质。最后,根据将流体温度从环境温度升高到初始储存温度 90 ◦ C 所需的输入能量,可以根据可能回收的热能计算出存储系统的效率。由于底土中粘土的热性能,先前的效率(𝜂 = 0。46 ) 报告称,含水层能量热能储存可以通过相对较小的储存量获得,而不需要像大多数季节性热能安排那样连续的能量入口,在储存腔的最佳条件下,有潜力回收 70% 的入口热能。
可再生能源在电网中的份额不断增加,需要存储技术来平衡能源供需。热集成泵送热能存储系统被认为是中型到大型存储应用的有前途的技术。其中,压缩热能存储已被众多理论研究确定为有前途的候选技术。尽管进行了这些研究,但迄今为止理论概念的可行性尚未通过实验得到证实。为了弥补这一差距,本出版物首次介绍了世界上第一个 CHESTER(可再生能源压缩热能存储)实验室原型的整个设置和实验结果,该原型具有代表性规模,包括高温热泵和有机朗肯循环,结合显热和新型双管潜热存储作为高温热能存储系统。展示了 10 kW 规模的完全集成 CHEST 系统的稳定运行,并确认了潜热存储单元作为冷凝器和蒸发器的稳定功能。目前的原型结合了三个首创的子系统,效率高达 37%。所呈现的结果证实了迄今为止理论概念的实际可行性,并为进一步优化组件以及更重要的是各个子系统之间的相互作用提供了指导。
为了鼓励脱碳并推动可再生能源在所有能源领域的广泛渗透,开发高效的能源存储系统至关重要。有趣的电网规模电力存储技术是卡诺电池,其工作原理是基于以热能的形式储存电能。充电阶段通过热泵循环进行,放电阶段通过热机进行。由于涉及热能和电能流,可以采用卡诺电池为热电能源系统提供更大的灵活性。为此,需要有效的调度策略来管理不同的能量流。在此背景下,本文提出了一种详细的基于规则的控制策略来调度集成到区域供热变电站和光伏电站的 10 kWe 可逆热泵/有机朗肯循环卡诺电池的协同工作,以满足当地用户的热能和电力需求。卡诺电池与区域供热变电站的结合,可以通过卡诺电池储存的热能来降低热能需求峰值,从而缩小区域供热变电站的规模,并大幅降低投资成本。由于所涉及的能量流多种多样,运行模式也多种多样,因此开发了一种卡诺电池调度逻辑,以根据边界条件最大限度地降低系统运行成本。为了研究主要系统设计参数的影响,采用了详细而精确的卡诺电池模型。研究了两种具有不同热泵冷源布置的参考系统变体。在第一种情况下,热泵从免费废热中吸收热能。在第二种情况下,热泵冷源是区域供热变电站的回流分支。模拟结果表明,在第一种情况下,卡诺电池可以使区域供热变电站的规模缩小 47%,每年可带来 5000 多欧元的收益。大约 70% 的经济效益归因于可以减少区域供热变电站的功率大小,从 300 kW 减少到 500 kW 以上。估计回收期不到 9 年,而在第二种情况下,卡诺电池无法提供收益。最后,通过广泛的敏感性分析研究了一些参数(例如光伏电站表面、存储量、电价曲线和可逆热泵/有机朗肯循环特定投资成本)对系统技术经济性能的影响。根据结果,光伏板表面对经济收益没有显著影响,而存储容量对系统调度和运营成本有很强的影响。事实上,可以确定,对于所考虑的应用,13 m 3 是可使回收期最短为 8.22 年的存储量大小。如果热能价格不上涨,而电价上涨,则会导致经济收益下降,因为从经济平衡来看,缩小区域供热规模所带来的好处并不那么重要。可逆热泵/有机朗肯循环的单位投资成本不影响运行成本;因此,它不会改变卡诺电池管理,也不会改变经济收益。单位投资成本影响回收期,回收期从单位成本 2000 欧元/千瓦时 (€2000) 的 8.6 年增加到单位成本 5000 欧元/千瓦时 (€2000) 的 15.7 年。
陶瓷涂层是一种液体聚合物,用手将其施加到车辆外部。涂层与车辆的工厂涂料化学结合,从而产生了一层保护。陶瓷涂层不能替代油漆保护膜,该薄膜提供了更全面的保护。而是它是一种优质的蜡替代品。一种陶瓷涂层与车辆的油漆产生永久性或半永久性键,这意味着它不会洗掉或分解,并且不需要每隔几个月重复使用一次。纳米陶瓷涂层的优势
到达能量的时间。。研究和写作。感谢您的项目。不仅仅是Heloisa Moreno。我们还感谢受访者和讲习班参与者的时间和见解,包括:巴西工业发展机构(ABDI),工会总检察长(AGU),工会审计长(CGU),联盟审计律师法院(TCU),国立公共行政学院(ENAP)公共研究所(iPea Cruive Inditute Industry Inditute Industriuts)(ipea cruz)(FIRBO)(FIRBO)(FIMEA)(FIMEA)(FIRBO)(iPEA)共享(FIRES)(FIRBO)(FIRBO)(OSU),OSSORE众议院,OS。教育发展基金发展基金(FNDE),国家卫生基金会(FUNASA),传播部(MCOM),科学,技术与创新部(MCTI)(MCTI),家庭农业部(MDA),发展,商务与服务部(MDIC)(MDIC),开发与社会援助部(MF)(MF)(MF),MICRORISIN and INSTRORISIC,MICRORISIC,MICRORISIC,MICRORISIN和NERVERRORISIS(MID),MICRORISIN和NERVERRORISIS(MID) (MEMP),司法和公共安全部(MJ),环境与气候变化部(MMA),外交关系部(MRE),运输部(MT),农业与能源部(MME)研究与工业创新(MME)研究与工业创新(EMBRAPII),国家经济与社会发展(BRAS BRAS BRAS),CAIXA ecixa econil(CAIXIL) (BB),巴西石油S.A.(Petrobras),研究与项目金融家(FineP),服务