能源转型正在顺利进行,能源供应和能源使用在各种应用中变得更加可持续。能源转型的下一步是使供需更加可持续。实现这一目标主要有两种方式:在可再生能源发电量大时使用电力和利用能源储存。在热能领域,这可以通过将电能转化为热能(电转热,P2H)并储存热量以便以后充分利用来实现。在本研究中,我们重点关注使用 P2H 和热能储存使热能网络更加可持续的机会。对于 P2H,我们考虑了两种技术:热泵和电热水器。对于热能储存,我们研究了储罐储存(TTES)、地下孤立孔储存(PTES)和地下蓄水层高温储存(HT-ATES)。图 1 说明了这一概念。这项研究的目的是通过深入了解 P2H 和储存(P2H+S)的潜力和发展,将电力和热能的世界联系起来。在这项研究中,我们定义了商业案例并确定了 P2H+S 的技术潜力。此外,我们通过以综合方式对热网中的发电和来源进行建模,绘制了对电力系统的影响。最后,我们分析了障碍,并根据这一分析制定了政策建议,以使 P2H 和热存储正常运行。
欧洲能源转型计划设立了明确的目标,即在绿色协议能源政策框架下到 2050 年实现气候中和的欧洲 [1]。欧盟委员会于 2021 年通过的“Fit for 55 0”一揽子计划为欧盟 2030 年气候和能源框架引入了更为严格的立法措施,包括可再生能源、能源效率、努力分担和排放标准立法、土地使用和林业以及能源税指令 [2]。现有的欧盟立法框架已被用于实施绿色协议愿景,明确表明未来能源结构中可再生能源 (RES) 的比重将增加,以及排放交易体系 (ETS) 对所有能源部门实施更严格的脱碳机制。太阳能和风能的不断普及极大地激励了电网的脱碳。然而,向欧盟碳中和能源系统有效利用低碳和可再生能源需要扩展到热力和运输领域,同时促进供应安全。通过结合节能和用电子燃料(基于电力生产氢气、合成气体和液体)取代化石燃料,可以将可再生能源发电系统的规模扩大 2 到 2.5 倍 [3],从而实现最终能源需求领域的气候中和。通过提高电气化程度实现的能源转型不仅对能源系统提出了巨大的挑战,包括太阳能和风能发电场的巨大容量和投资,而且对供应安全以及技术、经济和监管层面所需的额外措施也提出了挑战。目前,德国 [4]、美国 [5] 和中国 [6] 的可再生能源渗透率较低,已经报道了可再生能源的削减,导致可再生能源浪费和市场电价为负。电力供需时间间隔方程既需要运行单元的灵活性和同步性,也需要额外的能源储存措施、部门耦合和电网基础设施升级,以及高效的多国综合系统和市场,以经济高效地平衡可变可再生能源发电[7]。2050 年欧盟碳中和系统的能源建模研究解决了多功能能源储存技术的需求,以避免在可再生能源可用性高时通过负荷转移和灵活性进行削减,以及避免在可再生能源可用性低时进行负荷削减[3,8]。特别是,由于储存需求与总发电量的非线性增长有关,氢气和合成燃料形式的季节性能源储存被认为非常重要,因为报告称,电子燃料在最终能源中的份额为 20%。
摘要 工业脱碳是欧盟实现 2050 年气候中和目标的瓶颈。用低碳电力取代化石燃料是这一挑战的核心;然而,各种工业过程的总体电气化潜力和由此产生的全系统二氧化碳减排量尚不清楚。在这里,我们展示了对 11 个工业部门(占欧洲工业二氧化碳排放量的 92%)能源使用情况的全面自下而上的分析结果,并分三个阶段估算了工业电气化的技术潜力。78% 的能源需求可以通过既有技术实现电气化,而 99% 的电气化可以通过添加目前正在开发的技术实现。如此深度电气化已经基于当今电力的碳强度(∼ 300 gCO2 kWh el −1)减少了二氧化碳排放。随着电力行业脱碳程度的不断提高(IEA:2050 年为 12 gCO 2 kWh el − 1),电气化可以减少 78% 的二氧化碳排放量,几乎完全减少与能源相关的二氧化碳排放量,从而将工业瓶颈降低到仅残留工艺排放。尽管直接电气化具有脱碳潜力,但其在工业中的应用程度仍不确定,并且取决于与其他低碳选项相比电气技术的相对成本。