11月25日星期一和11月26日星期二加入我们,参加Boola Bardip博物馆的巡回演出!在Boola Bardip主入口外面见面(从我们的SLWA会议场所步行短短1分钟,请参见下面的蓝色球),午餐后和下午会议开始之前。巡回演出将从13:15到第一天的14:00之前的40分钟不超过40分钟,然后在第二天的13:15-14:15稍长一点 - 整整60分钟的史莱姆!在第一天由丽莎·柯肯代尔(Lisa Kirkendale)和第二天的科里·惠森(Corey Whisson)领导,史莱姆步道(Slime Trail)承诺让您惊讶于您在西澳大利亚州出现的软体动物 - 带您敏锐的眼睛!!!!
全球生态系统包括超过175万种不同的物种,其中有46,000种公认的海洋软体动物(Bouchet等人)2016)。门lum占全球生物多样性的60%。在1996年。印度拥有各种各样的海洋环境,包括潮汐公寓,泻湖,珊瑚礁,深海地区和岛屿。直到17世纪,印度对海洋生物多样性的探索才发生。印度的海岸线占地8,129公里,大陆架覆盖了50万平方公里。在其水域内,有3,370种不同的海洋软体动物属于220个家庭和591属(Ramakrishna and Dey 2010)。是最多样化的(1100种),其次是头足类(210种),腹足动物(190种),多氯植物(41种)和scaphopods(20种)。各种作者在印度的海洋软体动物总数中尚无共识。然而,缺乏有关印度海上环境中不同Mollusc物种状况的当前知识,其威胁地位仍然不明身份。印度是全球七类软体动物中五个类别的家园,如
摘要生态系统为包括食物,水,气候调节和审美体验在内的人们提供必不可少的服务。生物多样性可以增强和稳定生态系统功能,并提供自然系统提供的服务。淡水软体动物是一个多元化的群体,通过其喂养习惯(例如过滤器喂养,放牧),对食物网的自上而下和自下而上的影响,提供各种生态系统服务,提供栖息地,提供栖息地,用作人们的食品资源以及文化重要性。研究重点是量化软体动物影响生态系统服务的直接和间接方式,可以帮助政策制定者和公众了解软体动物社区对社会的价值。淡水软体动物保护协会强调了在其2016年国家保护本地淡水软体动物的国家战略中评估软体动物生态系统服务的必要性,尽管已经取得了显着的进步,但在整个研究,管理和外展社区中取得了大量的工作,但仍有大量工作。我们将回顾本地淡水软体动物的全球状况,评估有关其生态系统服务的当前知识状态,并重点介绍最近的进步和知识差距,以指导进一步的研究和保护行动。我们的意图是为生态学家,保护主义者,经济学家和社会科学家提供信息,以改善基于科学的软体动物社区对健康水生系统的社会,生态和经济价值的考虑。
图 1 无脊椎动物和水产养殖软体动物的训练免疫反应模型比较。该图说明了在无脊椎动物和海洋软体动物中观察到的训练反应的多样性。图中显示了训练诱导(初级反应)和挑战(次级反应)后随时间推移的免疫反应。文献中描述的不同反应模式用不同颜色的曲线表示。图例表示观察到不同模式的物种:训练后诱导的持续反应,没有消退阶段,一直持续到次级反应(深蓝色线);免疫转变显示出性质上不同的初级和次级反应,涉及不同的基因组(浅蓝色和深绿色线);耐受反应有初级反应但没有次级反应(浅蓝色线)。双相反应,称为回忆反应,有初级反应后是消退阶段,对后续挑战有类似或更强和更快的次级反应(浅绿色线)。
广泛用于人类的药物在环境中的流行令人担忧,这些药物针对的是存在于各个门类中的关键进化保守生物分子。抗抑郁药是全球使用最广泛的药物之一,其开发目标是针对调节单胺能神经传递的生物分子,从而干扰多种关键神经生理过程的内源性调节。此外,抑郁症发病率的迅速上升导致抗抑郁药的处方和消费率上升,这与全球水环境中抗抑郁药检测报告的增加相一致。因此,人们越来越担心长期接触环境中的抗抑郁药可能会对非目标水生生物造成不利的药物靶标特异性影响。虽然这些担忧导致了大量研究针对一系列毒理学终点,但不同类别抗抑郁药的环境水平对非目标水生生物的药物靶标特异性影响仍有待了解。有趣的是,有证据表明,软体动物可能比任何其他动物门都更容易受到抗抑郁药的影响,这使得它们在了解抗抑郁药对野生动物的影响方面具有无价的价值。本文描述了一种系统性文献综述方案,以了解不同类别抗抑郁药的环境水平对水生软体动物的药物靶标特定影响。这项研究将提供关键的见解,以了解和描述与监管风险评估决策相关的抗抑郁药的影响,和/或指导未来的研究工作。
在协同进化的选择下进化的免疫系统是动物对病原体攻击的抗药性(1)。生物体的免疫力分为适应性免疫和先天免疫。自适应免疫力在脊椎动物(2)中独立演变,并且是唯一具有记忆力的人。然而,越来越多的研究表明,先天免疫可以增强对继发感染的免疫反应,这意味着先天免疫具有记忆力(3)。但是,与自适应免疫记忆不同,先天免疫的记忆涉及表观遗传修饰(4)。在脊椎动物中,还描述了自适应免疫记忆,先天免疫记忆或训练有素的免疫力(5,6)。在1986年(7)中首先描述了脊椎动物先天免疫在巨噬细胞中建立免疫记忆的能力,这似乎是由环境应力条件引起的(8-10),因此与T或B淋巴细胞触发的经典免疫学记忆不同(11,12)(图1)。许多关于疫苗和病原体的研究提供了先天免疫记忆的证据,例如在没有T/B淋巴细胞的SCID小鼠中,已经表明Bacille Calmette-
与国际自然保护联盟或IUCN(2016年),约有1088种被归类为濒危或严重威胁,其中27%被评估为数据缺陷,表明数据不足以完全评估保护状态。截至2016年9月,国际自然保护联盟(IUCN)列出了507种濒临灭绝的软体动物,占所有评估的软体动物物种的7.0%。此外,IUCN列出了9个Mollusk亚种为濒危。这些数量强调了被归类为濒危物种的大量软体动物,强调了保护这些物种及其栖息地的必要性(IUCN,2016年)。对软体动物种群的持续威胁不仅对环境和生态系统有害,而且是由于
图1无脊椎动物和水产养殖软体动物中受过比较训练的免疫反应模型。该图说明了在无脊椎动物和海洋软体动物中观察到的训练反应的多样性。训练诱导后的免疫反应(主要反应)和挑战(次要反应)。 文献中描述的不同响应模式由不同颜色的曲线表示。 传说指示观察到不同模式的物种:训练时诱导的持续反应,没有消光期,直到次级响应(深蓝色线);免疫移位显示出定性不同的主要和次要反应,涉及不同的基因集(浅蓝色和深绿色线);具有主要响应的公差响应,但没有次级响应(浅蓝色线)。 双相反应,命名为召回响应,其主要响应随后是灭绝阶段,以及对后续挑战(浅绿线)的相似或更强大,更快,更快的次要响应。训练诱导后的免疫反应(主要反应)和挑战(次要反应)。文献中描述的不同响应模式由不同颜色的曲线表示。传说指示观察到不同模式的物种:训练时诱导的持续反应,没有消光期,直到次级响应(深蓝色线);免疫移位显示出定性不同的主要和次要反应,涉及不同的基因集(浅蓝色和深绿色线);具有主要响应的公差响应,但没有次级响应(浅蓝色线)。双相反应,命名为召回响应,其主要响应随后是灭绝阶段,以及对后续挑战(浅绿线)的相似或更强大,更快,更快的次要响应。
耕种的淡水虾(Macrobrachium Rosenbergii)和黑老虎虾(Penaeus Monodon)构成了孟加拉国海鲜出口的很大一部分,从而引起了人们对环境影响的担忧。淡水虾农场需要相对较高的饲料供应量,释放1.0吨Co 2-均等年/年,相当于18.8千克CO 2 E/MT虾,对全球变暖和气候变化的风险做出了重大贡献。综合多营养养殖(IMTA)为传统的大虾养殖系统提供了另一种耕作方法,因为它可以最大程度地减少温室气体(GHG)排放和气候变化的影响。系统地回顾了关于IMTA的112篇科学文章,本文提出了采用IMTA来推广孟加拉国可持续淡水虾种植的建议。imta正在世界许多地方进行广泛的实验和实践,提供经济利益,社会可接受性和环境可持续性。除了本地虾类外,还有各种土著有机提取的淡水软体动物和无机的提取植物可用,可以无缝地用于量身定制IMTA系统。提取生物,包括虾农场内的水上软体动物和植物,可以有效地捕获蓝碳,从而有效降低温室气体排放并帮助减轻气候变化的影响。水生软体动物为鱼类和牲畜提供饲料,而水生植物则是双食物来源,并为农田的堆肥生产做出了贡献。对孟加拉国的IMTA的研究主要是在淡水池塘中的鳍鱼进行的,而虾农场的IMTA缺乏研究。这需要在大虾农民一级进行研究,以了解孟加拉国西南部虾产生地区的提取水生软体动物和植物的生产。