…………………………………………………………………………………… …………………………………………………………………………………… Anticipated Contract Duration: ………………………………………………….将完成工作的位置,将提供好/服务:………………………………………………………………………………………………………………………………………………………………………………承诺I………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………[插入公司的全名]特此以书面形式承担,我的公司将在所有相关时间完全符合《劳动法》的相关规定以及适用的集体协议的条款和条件。我完全意识到,如果不遵守此项,则应导致2007年《工党法》第138条规定的诉讼,其中包括但不限于取消合同/许可/授予/许可/许可证或特许权。签名:………………………………..日期:……………………………………………………………………………………………………………………………………………………
本征态热化假设 (ETH) 解释了为什么当哈密顿量缺乏对称性时,非可积量子多体系统会在内部热化。如果哈密顿量守恒一个量(“电荷”),则 ETH 意味着在电荷区内(微正则子空间内)的热化。但量子系统中的电荷可能不能相互交换,因此不共享本征基;微正则子空间可能不存在。此外,哈密顿量会有退化,所以 ETH 不一定意味着热化。我们通过假设非阿贝尔 ETH 并调用量子热力学中引入的近似微正则子空间,将 ETH 调整为非交换电荷。以 SU(2) 对称性为例,我们将非阿贝尔 ETH 应用于计算局部算子的时间平均和热期望值。我们证明,在许多情况下,时间平均会热化。然而,我们发现,在物理上合理的假设下,时间平均值收敛到热平均值的过程异常缓慢,这是全局系统大小的函数。这项工作将 ETH(多体物理学的基石)扩展到非交换电荷,这是量子热力学最近非常活跃的一个主题。
已经开发出能够进行多模式运动的机器,这些机器能够在非结构化环境中机动,用于搜索和救援行动、[2] 监控和防御等应用。 [3] 这种多模态性通常通过 i)身体形状变形、ii)步态改变或 iii)使用不同的驱动或推进机制实现。 一种流行的方法是使用专门用于相应环境中运动的不同推进机制(例如,螺旋桨用于飞行和游泳,轮子用于陆地运动 [4,5] )。 然而,多种推进机制会使设计复杂化,并增加此类系统的重量。 同样,使用能够实现不同步态和运动模式的单一推进机制可以简化设计,但通常会导致在某些环境中的移动性受到更多限制。 [6–8] 一种有前途的替代方案是利用身体的可逆形状变形,这样就可以重新调整一组常见的执行器或机器人肢体,以执行新的地面接触或流体结构相互作用模式(参见参考文献 [9–11] 中的示例)。软机器人特别适合可逆形状变化,因为它们具有机械可变形性和对受控刺激的形态反应。最近,Baines 等人提出了一种形状变形肢体,它可以利用刚度调节在鳍状肢和腿之间变换。[12] 这种肢体被安装在受海龟启发的机器人 [6] 上,以促进两栖运动。Shah 等人提出了一种
摘要 量子引力领域的最新提议表明,如果中介本身是非经典的,那么未知系统可以介导两个已知量子系统之间的纠缠。这种方法可能适用于大脑,人们对意识和认知中的量子操作的猜测由来已久。最有可能干扰任何大脑功能的体水的质子自旋可以充当已知的量子系统。如果存在未知的中介,那么基于多重量子相干性 (MQC) 的 NMR 方法可以充当纠缠见证人。然而,人们怀疑当今的 NMR 信号是否通常包含量子关联,特别是在大脑环境中。在这里,我们使用了基于零量子相干性 (ZQC) 的见证协议,其中我们最小化经典信号以绕过 NMR 对量子关联的检测限。对于短暂的重复周期,我们在大脑的大部分区域发现了诱发信号,其时间外观类似于心跳诱发电位 (HEP)。我们发现这些信号与任何经典 NMR 对比都没有相关性。与 HEP 类似,诱发信号取决于意识。意识相关或电生理信号在 NMR 中尚不清楚。值得注意的是,这些信号只有在磁化的局部特性降低时才会出现。我们的发现表明,我们可能已经目睹了由意识相关的大脑功能介导的纠缠。这些大脑功能必须以非经典方式运行,这意味着意识是非经典的。
简介:神经系统软征被定义为典型发育中的儿童神经心理病理学的潜在预测指标,这可能会导致神经自然发展的差异。这些迹象可以在学龄期间确定,并且可以作为不足的发育模式的指标,有时会带来负面的预后前景。目的:本研究旨在比较5和6岁的学龄儿童神经心理成熟度以及神经系统软征的存在/不存在。方法:进行了一项采用非实验性的横截面设计的比较研究。使用儿童神经心理成熟问卷(Cumanin,其首字母缩写为西班牙语),并利用了儿童神经心理学评估(ENI的西班牙语缩写)的神经系统软迹象的附件。结果:在心理运动技能,视觉感知,节奏,言语流利性,非语言发展,整体发展和发展商的领域中获得了统计学上的显着差异。平均得分低于平均水平,在显示神经系统软标志的小组中,特别是在表达语言,节奏,语言流利性,注意力,口头发展和整体发展的领域。结论:参与者表现出神经心理成熟的平均水平,强调了神经系统软迹象对神经心理成熟的影响及其对言语和非语言领域的发展的影响。
1 简介 1 1.1 概述 1 1.1.1 软错误的证据 2 1.1.2 软错误的类型 3 1.1.3 减轻软错误影响的经济有效的解决方案 4 1.2 故障 6 1.3 错误 7 1.4 指标 9 1.5 可靠性模型 11 1.5.1 可靠性 12 1.5.2 可用性 13 1.5.3 其他模型 13 1.6 互补金属氧化物半导体技术中的永久性故障 14 1.6.1 金属故障模式 15 1.6.2 栅极氧化物故障模式 17 1.7 CMOS 晶体管中的辐射诱发瞬态故障 20 1.7.1 阿尔法粒子 20 1.7.2 中子 21 1.7.3 阿尔法粒子和中子与硅晶体的相互作用 26 1.8 阿尔法粒子和中子撞击的架构故障模型 30 1.9 静默数据损坏和检测到的不可恢复错误 32 1.9.1 基本定义:SDC 和 DUE 32 1.9.2 SDC 和 DUE 预算 34
软机器人技术是机器人技术的一个特定子领域,涉及使用与生物体中类似的高柔顺性材料构建机器人。软机器人技术很大程度上借鉴了生物体移动和适应周围环境的方式。与用刚性材料制成的机器人相比,软机器人可以提高完成任务的灵活性和适应性,并在与人类一起工作时提高安全性。这些特性使其在医学和制造业领域具有潜在的用途。为了了解软机器人技术在研究中的普遍性,截至 2021 年 4 月,在 Web of Science 数据库中对关键词“软机器人”进行简单搜索,结果超过 6.6k 个条目,自 2010 年代初开始激增,并且仍然受到越来越多的关注(图 1)。本书的目的是全面概述软机器人技术的广泛领域以及化学工程如何参与其中。读者将了解软机器人的基础知识,并了解软机器人在不同工业和研究领域最突出的应用。重要的是,本书还将强调在大型产品中实施软机器人所面临的挑战和问题。全书分为七章。第一章讨论软机器人的主要原理,特别是软微机器人。Bernasconi 博士(第 1 章)介绍了近年来实施的新功能和驱动策略。本章介绍了使用软物质制造的微型机器人的材料、制造技术、驱动策略和应用,重点关注一些特殊类型的材料,如生物实体和硬软混合物。Costa Angeli 博士(第 2 章)概述了可用于软机器人的打印技术和可打印材料。本文还重点介绍了这些技术在工业中的应用所需要解决的主要挑战。 Sacchetti 教授(第 3 章)进一步阐述了该领域中金属有机骨架 (MOF)。金属中心和有机骨架之间的配位产生了复杂的组装体,这些组装体可以从一维结构发展为配位聚合物。本章将简要说明 MOF 在化学物质传感中的应用。MOF 与
(3) 黑色素瘤。LM 发病率最高的是黑色素瘤 (23%) 和肺癌 (9-25%),其次是乳腺癌 (5%)。考虑到全世界乳腺癌的高发性,从绝对数量上看,它是 LM 最常见的病因。罕见的是,软脑膜转移是肿瘤的首发表现。多达 60-70% 的患者会同时出现全身性疾病进展。约 40% 的患者出现脑转移,其中一半在诊断为软脑膜转移时出现进展,20% 的患者报告出现新的脑转移 [ 2 , 3 ]。软脑膜肿瘤表现的预后通常较差,大多数患者群的中位生存期仅限于数月,但分子改变的肿瘤除外,这些肿瘤可以通过靶向药物治疗,因此疾病控制时间可能更长。对这种特殊肿瘤表现的文献搜索提供了以下术语的信息:“癌性脑膜炎”、“癌性脑膜炎”、“肿瘤性脑膜炎”、“软脑膜癌病”和“软脑膜转移”。 下文将使用术语“软脑膜转移”,缩写为“LM”。
轻工业 通信 建筑业 食品工业 机械制造 海上运输 汽车运输 木材加工和纸浆及… 所有工业 冶金 化学和石油化工… 燃料工业和电力 集体农场 河流运输 国营农场 铁路运输