合成。研究自然界中发现的结构已经并将继续推动 3D 制造策略的发展。近年来,该领域的进展取得了巨大的进步,如今相对容易制造的结构在几十年前似乎是不可能的。新的发展,特别是在由软材料或包含软硬成分的混合结构制成的结构构造方面不断涌现。创造模仿生物材料的特性和功能或可以与生物材料相互作用、探测和控制生物材料的软合成结构继续推动该领域的研究。这里,我们重点介绍了文献和我们研究的最新贡献,并利用报告强调了在软材料功能集成到复杂形式的 3D 架构的背景下,软材料化学进展的机会和当前需求。本文考虑的方法旨在强调异质集成的最新范例——利用定向组装和打印来构建复杂功能复合材料结构的 4D 制造方法。
传统上,用刚性材料制造的机器人已被广泛用于制造。然而,缺乏灵活性和能量吸收会导致机器和人之间的相互作用非常危险。相比之下,变形,适应性,灵敏度和敏捷性使软机器人能够更好地弥合此间隙。与可以描述为6度离散自由度的刚性机器人(3个关于X,Y,Z轴的3个旋转和3次翻译),软机器人的固有变形是连续的,复杂的且符合的,这被认为是自由度的非限定度[Tolley(Tolley(2015)]。因此,很难通过直接通过反向和反向运动学来控制软材料制造的机器人的运动。因此,量化和复制软材料的行为成为主要挑战之一。随着现代技术的开发,例如Microscale 3D打印,可以通过:
抽象的磁反应性软材料是软复合材料,将磁性填充剂嵌入软聚合物矩阵中。这些活性材料由于能够在磁场的应用下通过远程和不受束缚的控制实现快速,可编程的形状变化,因此吸引了广泛的研究和工业兴趣。他们将在软机器人/设备,超材料和生物医学设备中具有许多高影响力的潜在应用。具有广泛的功能磁性填充剂,聚合物矩阵和先进的制造技术,可以对材料特性进行编程,以用于集成功能,包括可编程形状变形,基于动态形状变形的机能,对象操纵和组装,远程热量,远程热量产生以及可重新配置电子设备。在这篇评论中,提出了多功能磁性响应式软材料中最先进的发展和未来观点的概述。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
我是软材料的理论和计算研究专家。软材料被归类为施加力时容易变形的材料。示例包括生物种子,聚合物,胶体,液体和纳米材料。My research encompasses a wide range of topics, including biomolecules, proteins, lipid membranes, viruses such as SARS- CoV-2 and bacteriophages, polymers, metal-polymer complexes, polymer brushes, polysaccharides, polyelectrolyte membranes, colloidal systems, surfactants, shock waves, energy adsorption systems, chromatographic separation, and electron束光刻。我精通几种计算科学软件包,科学编程和源代码修改。我有教授物理学和计算方法的经验。我已经与来自印度,加拿大,美国,非洲,俄罗斯和中国在内的全球专家研究人员和学生合作。我已经成功地获得了资助机构的研究赠款,例如国家科学基金会,新泽西州临床和转化医学联盟(NJACTS),并与杜邦和高尔盖特 - 帕尔莫利维(Colgate-Palmolive)等行业合作伙伴合作。
NSF材料研究科学与工程中心(MRSEC)MRSEC.HARVARD.EDU MRSEC的两个跨学科研究小组(IRGS)试图创建新的软功能材料类别,并提供对远离平衡系统的机械软系统的行为的新见解。irg I专注于可编程的多尺度和功能性问题的多材料控制,旨在在材料合成,建模和3D打印方面的基本进步,从而可以创建增强人类绩效的功能软材料。新的柔软材料类别,这些材料感知,促使和交流正在开发用于可穿戴设备,触觉界面和人造肌肉,以增强人类技术领域的未来工作。irg II,重点是机械柔软系统中的非平衡现象,他正在寻求对机械软系统的行为的新见解,而机械柔软的系统的行为却远离平衡。通过结合数据丰富的实验,理论和人工智能,这项研究将极大地利用数据革命到软材料的应用。
蓝相(BPS)是手性液晶,具有拓扑缺陷的常规晶格。通过分子自组装,BPS独特的软性对称性提供了许多与常规液晶不同的优秀特性。,已经开发出化学图案的表面,以将BP的自组装引导为具有所需晶格方向的完美单晶,从而进一步受益于光子学和智能电子光学设备的设计。然而,BP的相关长度(定义为保持相同BP时间端方向的距离,这是一个必不可少的设计参数)迄今仍未透露。在这里,纳米级化学模式设计的替代平面和同型锚固条纹的设计允许系统地研究沿不同动力学途径的图案化区域以外的BP的生长,以及相关长度的时间演化。对相关长度的新理解可用于指导BPS宏观的单晶的合理设计,该设计依赖于减少的图案表面,这为基于BPLC的新功能和开发提供了令人兴奋的材料,以将基于BPLC的功能和开发用于高级光学设备或软材料设计或软材料设计。