有几种针对AUV的推进技术。他们中的一些人使用刷子的无刷电动机,变速箱,唇部密封箱和可能被喷嘴包围的螺旋桨。所有这些嵌入在AUV结构中的部分都参与推进。其他车辆使用推进器单元来维持模块化。根据需求,推进器可能配备了用于螺旋桨碰撞保护的喷嘴或减少噪声提示的喷嘴,或者可能配备了直接驱动推进器,以使效率保持最高水平,噪音处于最低水平。高级AUV推进器具有冗余轴密封系统,以确保机器人的适当密封即使在任务期间其中一张密封件失败。
本报告中将“常规螺旋桨布置”这一术语应用于商用船舶船尾的螺旋桨安装。由于系统冗余的要求,DP 船舶使用双螺旋桨安装。大多数船形 DP 船舶(钻井船等)均采用这种布置。原动机(大多数应用中为电动机)通过减速齿轮和推进轴驱动螺旋桨。轴由船体内部的一个或多个轴承支撑。轴穿过船体由艉轴管组件完成,该组件包括两个轴承(油或水润滑)和一个轴密封。这种布置简单可靠。螺旋桨设计用于最大速度要求;DP 服务期间仅需要部分功率。船尾的空间允许安装直径相对较大的螺旋桨,该螺旋桨在系柱牵引(零流入速度)和低流速 DP 操作期间产生高比推力。
摘要:过程工业的实物资产包括压缩机、泵、热交换器、间歇反应器等。在许多站点运营的大型公司通常以协调的方式将这些资产作为资产车队进行管理。维护和调度的战略规划需要有关资产车队中资产的可靠性、可用性和可维护性的信息。本文介绍的工作基于 OREDA(海上和陆上可靠性数据项目)收集的数据来评估离心式压缩机的可靠性。故障树(一种自上而下的方法,用于说明系统中的所有子系统)已通过关注压缩机的六个主要子系统(电力传输、压缩机、控制和监控、润滑系统、轴密封系统和其他)进行建模。考虑了 ISO 14224 中描述的所有可维护项目。根据 OREDA 中收集的故障率,通过帕累托分析确定了最常见的故障。本文给出了哪些子系统应优先进行维护以及可能发生哪些类型的故障的建议。本文的主要贡献是基于行业的离心式压缩机系统故障机制统计分析。预计它将提高离心式压缩机系统的可靠性,并可以在具有类似 OREDA 的文档系统的工业环境中实施。
摘要:过程工业的实物资产包括压缩机、泵、热交换器、间歇反应器等。在许多站点运营的大型公司通常以协调的方式将这些资产作为资产车队进行管理。维护和调度的战略规划需要有关资产车队中资产的可靠性、可用性和可维护性的信息。本文介绍的工作基于 OREDA(海上和陆上可靠性数据项目)收集的数据来评估离心式压缩机的可靠性。故障树(一种自上而下的方法,用于说明系统中的所有子系统)已通过关注压缩机的六个主要子系统(电力传输、压缩机、控制和监控、润滑系统、轴密封系统和其他)进行建模。考虑了 ISO 14224 中描述的所有可维护项目。根据 OREDA 中收集的故障率,通过帕累托分析确定了最常见的故障。本文给出了哪些子系统应优先进行维护以及可能发生哪些类型的故障的建议。本文的主要贡献是基于行业的离心式压缩机系统故障机制统计分析。预计它将提高离心式压缩机系统的可靠性,并可以在具有类似 OREDA 的文档系统的工业环境中实施。