1 马来西亚国立大学工程与建筑环境学院电气、电子与系统工程系先进电子与通信工程中心,万宜 43600,马来西亚 2 达卡工程技术大学计算机科学与工程系,加济布尔,加济布尔 1707,孟加拉国 3 马来西亚理工大学无线通信中心,士古来 81310,马来西亚 4 卡塔尔大学电气工程系,多哈 2713,卡塔尔 5 马来西亚国立大学 (UKM) IR4.0 研究所,万宜 43600,马来西亚 6 卡塔尔大学土木与建筑工程系,多哈 2713,卡塔尔tariqul@ukm.edu.my (MTI); mchowdhury@qu.edu.qa (MEHC)
摘要 - 为轻量级的水下车辆操纵器系统(UVM)开发自主干预措施在近年来引起了极大的关注,因为这些系统有机会降低干预运营成本。开发自主UVMS功能是具有挑战性的,因为缺乏可用的标准软件框架和管道。以前的作品为水下车辆提供了模拟环境和部署管道,但没有提供完整的UVMS软件框架。我们通过创建钓鱼者来解决此差距:用于开发本地化,控制和决策算法的软件框架,并支持模拟传输。我们通过实现最新的控制架构来验证此框架,并证明具有平均误差低于0.25 m的平均误差和Waypoint跟踪的能力,平均最终误差为0.398 m。
扩散模型的出现代表了生成建模,表现出非凡的能力,可以从文本输入中产生高保真图像。与此同时,图像恢复(IR),包括超分辨率,脱毛,去核,涂料和压缩,仍然是低级视力研究中的重要领域。最近,将扩散模型集成到IR任务中的趋势越来越大,产生的结果超过了以前的方法。尽管如此,扩散模型在IR中的应用提出了自己的一系列挑战,包括模型设计中的复杂性以及有关操作效率的关注点。该项目从Wang等人的“实用扩散的先验扩散”(StablesR)中汲取了灵感。[2023],它巧妙地采用了预训练的文本对图像扩散模型的生成能力来增强盲目的超级分辨率(SR)任务。Stables的框架如图1所示。这项研究展示了与未修饰的稳定扩散Rombach等人进行微调的时间感知编码器。[2022]模型,可导致重大的恢复改进,同时保持原始的生成框架并减少培训费用。在这个项目中,我们旨在扩大跨各种IR任务中Stables的应用,并调查更轻巧的解决方案的潜力。
I.医学互联网(IOMT)是医疗设备和应用程序的收敛,可以使用网络技术连接到医疗保健信息技术系统[1]。过去几年中,IOMT的发展是由医疗保健领域中无线医疗传感器网络(WMSN)广泛使用的驱动。过去几年中,WMSN在医疗保健领域广泛使用了IOMT的发展[2]。在这样的情况下,将各种复杂的传感器设备放置在患者中,以收集和监视其生理参数,而不会损害其舒适性并将数据无线传输到医生的手持设备,例如平板电脑,智能手机和其他设备。基于这些数据,医生可以更全面地评估患者的健康状况。尽管收集了所有数据
摘要 利用 MRI 图像进行脑肿瘤分割对于疾病诊断、监测和治疗计划非常重要。到目前为止,已经为此开发了许多编码器-解码器架构,其中 U-Net 的使用最为广泛。然而,这些架构需要大量参数来训练,并且存在语义差距。一些工作试图制作一个轻量级模型并进行通道修剪,但这会产生较小的感受野,从而影响准确性。为了克服上述问题,作者提出了一种基于注意机制的多尺度轻量级模型 AML-Net,用于医疗物联网。该模型由三个小型编码器-解码器架构组成,它们使用不同尺度的输入图像以及先前学习的特征进行训练以减少损失。此外,作者设计了一个注意力模块来取代传统的跳过连接。对于注意力模块,进行了六个不同的实验,其中具有空间注意力的扩张卷积表现良好。这个注意力模块有三个扩张卷积,它们形成了一个相对较大的感受野,然后是空间注意力,以从编码器低级特征中提取全局上下文。然后将这些精细特征与解码器同一层的高级特征相结合。作者在 Cancer Genome Atlas 提供的低级别胶质瘤数据集上进行实验,该数据集至少具有液体衰减反转恢复模态。与 Z-Net、U-Net、Double U-Net、BCDU-Net 和 CU-Net 相比,所提出的模型的参数分别少 1/43.4、1/30.3、1/28.5、1/20.2 和 1/16.7。此外,作者的模型给出的结果为 IoU = 0.834、F 1-score = 0.909 和灵敏度 = 0.939,大于 U-Net、CU-Net、RCA-IUnet 和 PMED-Net。
近年来,基于 Transformer 的模型在医学图像分割领域备受关注,研究也在探索将其与 Unet 等成熟架构相结合的方法。然而,这些模型对计算的要求很高,导致当前大多数方法都侧重于分割 MRI 或 CT 图像的 2D 切片,这会限制模型学习深度轴上语义信息的能力,导致输出边缘不均匀。此外,医学图像数据集(尤其是用于脑肿瘤分割的数据集)规模较小,这对训练 Transformer 模型构成了挑战。为了解决这些问题,我们提出了 3D 医学轴向 Transformer (MAT),这是一种用于 3D 脑肿瘤分割的轻量级端到端模型,它采用轴向注意机制来降低计算需求,并通过-distillation 来提高在小数据集上的性能。结果表明,我们的方法比其他模型具有更少的参数和更简单的结构,实现了卓越的性能并产生了更清晰的输出边界,使其更适合临床应用。代码可在 https://github.com/AsukaDaisuki/MAT 上找到。关键词:深度学习、3D 脑肿瘤分割、3D Transformer、轴向注意力、自我蒸馏
摘要 - 汽车行业正在经历一场变革,以提高能源效率和减少排放。采用轻质材料(包括轻合金、高强度钢和复合材料)已成为提高能源效率和结构设计的关键战略。这篇综述文章探讨了轻质材料在汽车工程中的特性、机遇、挑战和未来前景。轻质材料具有提高燃油经济性、增强性能和可回收性等优势,而挑战则包括能源密集型生产、制造成本、材料集成、回收复杂性和安全考虑。本文讨论了轻质材料在各种车辆中的实际应用案例,强调了实施轻质材料所带来的切实好处。合作努力、创新制造技术和材料科学进步带来了光明的前景。尽管挑战依然存在,但轻质材料的潜在优势为更环保、更高效的汽车未来铺平了道路。
摘要:在发射环境中,卫星承受着严重的动态载荷。发射环境中的这些动态载荷可能导致有效载荷故障或任务失败。为了提高卫星的结构稳定性并使太空任务可靠地执行,必须有一个减少结构振动的加固结构。然而,对于有源小型SAR卫星,质量要求非常严格,这使得很难应用额外的结构来减振。因此,我们开发了一种碳纤维增强塑料(CFRP)基层压补片,以获得具有轻量化设计的减振结构,以提高S-STEP卫星的结构稳定性。为了验证基于CFRP的补片的减振性能,在试件级别进行了正弦和随机振动试验。最后,通过正弦和随机振动试验对带有所提出的基于CFRP的层压补片的S-STEP卫星的结构稳定性进行了实验验证。验证结果表明,基于CFRP的层压补片是一种有效的解决方案,可以有效降低振动响应,而无需对卫星结构设计进行重大更改。本研究开发的轻量化减振机制是保护振动敏感部件的最佳解决方案之一。