图 1:CReasPy-Fusion 方法的实验流程示意图。步骤 1(借用 CReasPy-Cloning 策略,左栏):用两个质粒转化酵母,从而表达 Cas9 核酸酶和 gRNA。步骤 2(借用 Fusion Cloning 策略,右栏):在线性重组模板(由酵母元件 CEN-HIS3 组成,带有或不带有 ARS,两侧是与目标基因座两侧相同的两个重组臂和一个抗生素抗性标记)存在下,将预装 pCas9 和 pgRNA 的酵母细胞与支原体细胞接触。步骤 3:进入酵母细胞后,目标基因组被 Cas9 切割,随后由酵母同源重组系统使用提供的线性 DNA 片段作为模板进行修复。因此,细菌基因组现在包括插入到精确位置的酵母元素,并由酵母作为着丝粒质粒携带。
摘要:表现出拓扑迪拉克费米的磁性材料引起了极大的关注。在这些系统中,自旋 - 轨道耦合和磁性的综合效应可以实现具有异国情调传输特性的新型拓扑相,包括异常的霍尔效应和磁性 - 手工学现象。在此,我们报告了TaCote 2中拓扑迪拉克抗铁磁性的实验签名,这是通过角度分辨的光学光谱和第一原理密度函数理论计算的实验签名。特别是,我们发现在费米水平上存在自旋 - 轨道耦合诱导的间隙,这与大型内在非线性霍尔电导率的表现一致。值得注意的是,我们发现后者对NE vector的方向极为敏感,这表明Tacote 2是实现具有前所未有的内在可调性水平的非挥发性自旋装置的合适候选者。关键字:非线性霍尔效应,狄拉克防fiferromagnet,拓扑,旋转 - 轨道耦合,arpes
b'porous [13]或树突[14]生长形态。[9]在基于TFSI的电解质中检测到具有不同形状的半球3D颗粒,这是施加电流密度的函数。[12]在Mg(TFSI)2盐电解质中,MGCL 2作为添加剂,连续的剥离和镀金导致SEI层的破裂和改革,从而在相应的断裂部位和不均匀的MG沉积中产生大量有效的电流密度。[13]通过这种机制,半球形沉积物进一步降解为多孔形态和被困的沉积物,这些沉积物是不可逆转地损失的。最极端的非均匀Mg生长形式是树突的形成,在mg阳极下发生的频率要小得多。到目前为止,仅在0.921 MACM 2的电流密度下仅针对MEMGCL的0.5 MOLDM 3溶液检测到树突。[14]'
连续评估:50%的最终考试:总计50%:100%阅读和参考文献主要教科书是宏观经济学原理,任何版本从8到12号,由Karl Case,Ray Fair和Ray Fair和Sharon Oster,Pearson Prentice Hall(NTU库呼叫编号:HB172.5.C337)。在下面的每周时间表中,本教科书称为CFO,章节数字来自第10版。此外,强烈建议将Gregory Mankiw撰写的宏观经济学原则用于广泛阅读。具有强烈理论偏好和数学背景的学生,建议享受安德鲁·ABEL,本·伯南克和迪恩·克鲁斯霍尔的宏观经济学教科书。,我还将不时上传有用的数据集的来源,媒体的新闻以及著名的经济学家对局部宏观经济问题的意见,这些问题与我们的课程有关,这些问题与我们的课程相关,属于Ntulearn,“对于那些感兴趣的人”。这意味着此类内容不会出现在您的期末考试或中期测验中。相反,它将您从本课程中学到的知识与现实世界的例子联系起来,使宏观经济原则相关,有趣且有用,并帮助您欣赏经济理论的力量和美丽。课程讲师
(10 -5 ) 钴铁硼 10 50 5 6.67 14.60 175.01 55.64 77.63 3.68 钴铁硼 5 50 5 8.46 29.48 384.88 64.82 135.41 3.22 钴铁硼 5 50 10 4.56 17.88 108.74 75.02 27.16 1.31 钴铁硼 * 5 50 10 4.65 14.77 78.57 87.39 9.91 0.53 钴铁硼 5 100 10 8.95 15.40 197.38 69.82 59.57 1.43 镍铁 10 50 5 8.72 2.66 10.78 215.17 -12.42 -1.95 镍铁 2.5 50 5 9.15 35.98 148.76 221.25 -180.37 -3.91 镍铁 2.5 50 10 4.58 27.30 54.35 230.17 -70.75 -3.02
摘要:使用带有大孔体积的导电单壁3D石墨烯作为阴极支撑材料的导电单壁3D石墨烯制备了有效的全溶剂李 - S电池的耐用纳米结构阴极材料。在活性材料的高载荷(50-60 wt%)下,在充电/放电过程中使用传统的阴极支撑材料观察了微观相位分离,但这通过将硫硫化到弹性和灵感的Nanoporof depline的中孔中的硫化抑制作用来抑制,并具有5.3 ml g的大孔。因此,在固体电解质,绝缘硫和导电碳中实现了耐用的三相接触。因此,在353 K的严格运行条件下,组装全稳态电池的电化学性能显着改善和可行,并提高了循环稳定性,并且循环稳定性以及最高的特定能力,最高的特定能力为716 mA H每克Cath cathe(4.6 Ma H cm-h cm-h cm-0.2 c can in 50%均达到50%的固定量(0.2 c)。关键字:纳米多孔碳,3D石墨烯,锂 - 硫电池,所有固定状态电池,大孔体积
摘要。NIST Quantum Cryptogra-Phy竞赛中的最终主义者之一是经典的McEliece Cryptosystem。不幸的是,其公共密钥大小代表了实际限制。解决此问题的一种选择是使用不同校正代码的不同家庭。大多数此类尝试都失败了,因为这些密码系统被证明不安全。在本文中,我们建议使用高较小距离距离自偶偶联代码和从中得出的刺穿代码的McEliece类型加密系统。据我们所知,到目前为止,此类代码尚未在基于代码的密码系统中实现。对于80位安全案例,我们构建了长度1 064的最佳自偶代码,据我们所知,该代码以前没有提出。与原始的McEliece密码系统相比,这使我们可以将密钥尺寸降低约38.5%。
•制定一系列特定的教学策略,以支持每个孩子参与和参与该计划,这是他们的需求和能力。这些策略可以解决该计划的所有要素,包括到达,例程和学习经验。,如果您作为一个团队共同努力提出这些策略并同意将始终如一地使用它们是有帮助的。也重要的是要确保支持该计划的其他工作人员(例如,早期干预人员)也会就这些策略进行简要介绍。
1北京邮政与电信大学科学学院信息光子学和光学通信的关键实验室,中国北京100876。电子邮件:bike@bupt.edu.cn 2国家主要实验室新陶瓷和精细处理,材料科学与工程学院,北京大学,北京大学,北京100084,电子邮件:wxh@tsinghua.edu.edu.cn.cn 3 3 3 3 3 3应用和应用数学部门sb2896@columbia.edu 4浓缩物理和材料科学系,布鲁克黑文国家实验室,纽约州阿普顿市11973 5北京国家冷凝物质物理学实验室,物理学研究所,中国学院科学研究所,贝吉利亚学院,北京100190,中国电子补充信息(ESI)。参见doi:10.1039/x0xx00000x
抽象的2D过渡金属二分裂基化元素(例如具有独特分层结构的MOS 2)在锂离子电池(LIBS)领域受到了极大的关注。但是,低电导率和结构稳定性差会对LIB的速率性能产生不利影响。在此,由水稻样的MOS 2 /c组成的柔性且独立的高性能锂离子电极(MOS 2 /c@ti 3 C 2 t X)组成,设计和证明了MOS 2的较大的层套管距离,含有大米的MOS 2 /C插入式Ti 3 C 2 t x和PVP衍生的碳组成。锂离子电池由于其高能量密度引起了极大的关注。因此,作为锂离子电池的阳极材料,MOS 2 /c@ti 3 c 2 t x在0.05 a g-1时提供了538.5 mAh g-1的高排放能力,并在2 a g-1处的256.7 mAh g-g-1的快速充电 /放电能力为2 a g-g-1,以及在2 a g-1的效果(以及150 cy)150 cyect and cy and cat a and cat a and 1 150 cy。密度功能理论(DFT)计算表明,水稻样的MOS 2 /C结构有利于锂离子的吸附和扩散,并促进了氧化还原反应。MOS 2 /C@Ti 3 C 2 T X结构有望增强高性能锂离子电池的新型2D材料的开发。