现实世界被动辐射冷却需要高度发射,选择性和全向热发射器,以将辐射冷却器保持在一定温度以下的一定温度下,同时最大程度地提高净冷却能力。尽管已经证明了各种选择性的热发射器,但由于控制多维中光子结构的热发射的极端困难,达到这些条件仍然具有挑战性。在这里,我们证明了与机器学习逆设计的混合极性介电交层热发射器,在8-13μm的大气透明度窗口中,高发射率约为0.92,大光谱选择性〜1.8,较大的发射范围为80度,高达80度。这种选择性和全向热发射极导致在〜800 w/m 2的强太阳照射下,温度降低至〜15.4°C的新记录,这显着超过了最新的结果。设计的结构在应对城市热岛效应方面还具有巨大的潜力,建模结果表明节能和部署区域减少。这项研究将对被动辐射冷却,热能光子学和应对全球气候变化产生重大影响。
白天辐射冷却(DRC)已成为一种有前途的方法,用于降低暴露于阳光的表面,而无需能耗。尽管DRC设计方面取得了进步,但由于可见的反射,现有的基于反射的方法通常缺乏透明度,从而阻碍了使用玻璃的广泛应用。效果导致了透明辐射冷却(TRC)的发展,尽管由于占主导地位的太阳能吸收,白天的有效冷却仍然具有挑战性。本文提出了一种新型的TRC设计,其中包括透明的双向电流结构上的聚二甲基硅氧烷(PDMS)发射极。使用优化的Bragg Repetor(OBR)和90μM孔孔式AG窗口屏幕屏幕回路(WR)分别用于反射近红外(NIR)光谱(0.74 <𝝀 <<1.4μm)和整体词素光谱的频带A和整体溶液谱。在白天,与PDMS涂层的玻璃相比,拟议的TRC通过透明的双回路系统将温度降低22.1°C。因此,这种方法使用双回路优化了太阳能反射和可见性之间的平衡,为需要冷却和透明度的应用提供了最佳解决方案。
[59] D. Tua,R。Liu,W。Yang,L。Zhou,H。Song,L。Ying,Q. Gan,基于等离子体的“ Rainbow”芯片,用于双功能智能光谱仪,电磁研究旨在介绍的进展,2024年4月,邀请演讲)。[58] S. dang,Y。Tian,H。H. Almahfoudh,H。Song,O。M. Bakr,B。S. Ooi,Q。Gan,Qu. Gan,地面辐射冷却,用于高功率LED灯,电磁研究研讨会的进展,2024年4月2024年4月。[57] L.[56] D. Tua,R。Liu,L。Zhou,W。Yang,H。Song,L。Ying,Q. Gan,用于智能光谱仪的等离子“ Rainbow”芯片,Cleo 2023,STH3R.5。[55] L. Zhou,H。Song,Q. Gan,等离子“ Rainbow”用于超分辨率位移光谱分析和表面生物传感,CLEO 2023,FF1C.3。[54] J. Rada, H. Hu, L. Zhou, J. Zeng, H. Song , X. Zeng, S. Shimul, W. Fan, Q. Zhan, W. Li, L. Wu, Q. Gan, Microscale concave interfaces for reflective displays generate concentric rainbows, Frontiers in Optics 2022, JTu5B.49。[53] Y. Liu,N。Zhang,D。Tua,Y。Y.2。[52] L. Zhou,J。Rada,H。Zhang,H。Song,B。S。Ooi,Q. Gan,可持续多孔的多孔聚二甲基硅氧烷,用于有效的辐射冷却,Cleo 2022,JW3A。10。5。[51] L. Zhou,H。Song,N。Zhang,J。Rada,M。H. Signer,Q。Gan,Q。Gan,一种双面辐射冷却结构,具有创纪录的局部冷却功率密度为270 W/m 2,Cleo 2021,JW2G,JW2G。[50] Y. Liu,H。Song,M。H. Singer,C。Li,D。Ji,L。Zhou,N。Zhang,N。Zhang,Z。Bei,Q。Gan,Q。Gan,Black Tio 2 on Nanopororoloordorordololololololtorquentrates,用于改进太阳能蒸气生成,Cleo 2020,AF3N.6。[49] L. Zhou,H。Song,J。N. Rada,M。H. Singer,H。Zhang,B。S. Ooi,Z。Yu,Q. Gan,spectrassival-spectry-seption-seplective镜子,用于双层辐射冷却,Cleo 2020,2020年,AF3N.5。[48][47] H. Song,W。Wei,J。Liang,P。Maity,O。F. Mohammed,B。S. Ooi,D。Liu,D。Liu,Q. Gan,使用超薄TIO TIO 2光催化膜在纳米腔的纳米腔上降低了CO 2,Cleo 2019,Ath1i.3。[46] L.
与地面数据中心相比,轨道数据中心具有多项基本优势,尤其是在规模达到 GW 级时。通过使用廉价的太阳能,可以显著节省运营成本,而不受下文讨论的地面太阳能发电场的限制。轨道数据中心可以利用太空中的被动辐射冷却来直接实现低冷却剂温度,从而降低冷却成本。或许最重要的是,它们可以几乎无限地扩展,而不受地球上面临的物理或许可限制,使用模块化快速部署。所有这些都将对环境产生净效益——欧盟委员会最近的一项研究得出结论,轨道数据中心将显著减少电网电力产生的温室气体排放,并消除用于冷却的淡水使用。3
进化。[7–15] 有序的中观尺度特征除了满足其他生存相关需求外,还能够实现在恶劣环境条件下选择性和宽带反射太阳辐射和热能管理。[7–15] 从历史上看,它们引起了研究人员的极大兴趣。例如,几个世纪前胡克和牛顿就研究过这种结构。[16,17] 迈克尔逊在完成著名的光速测量多年后,研究了昆虫和鸟类的金属色彩和生动的反射。[18] 现代对自然界中可见光和红外光子反射起源的理解[1] 得益于直接纳米级成像以及光子晶体和超材料的理论建模和实验实现的最新发展。 [19] 虽然反射可见光谱范围内光的结构吸引了最多的研究兴趣,但人们也注意到,自然界中的许多光子结构可以在近红外范围内反射(超过 50% 的太阳辐射能量会转化为热量),通常用于鸟类、甲虫等的热管理。[2,4–6] 某些蚂蚁,例如 Cataglyphis bombycina,不仅利用宽带可见光和近红外反射(其银色外观的原因)在极端温度条件下生存,还通过辐射冷却散热。[20] 虽然最近已经开发出各种光子和超材料设计来稳健地控制选择性或宽带反射率并用于辐射冷却,但大自然不断通过揭示类似的热管理解决方案给我们带来惊喜。 [20–22] 此类解决体温调节问题的生物学方法(其中许多方法尚待发现和理解)对于启发仿生和生物衍生建筑材料的开发具有重要意义,而仿生和生物衍生建筑材料将是本文的重点。现代建筑的热管理技术需求在很大程度上与地球上不同生命形式在过去数亿年中面临的需求相似。在这段时间内,太阳一直是地球上最重要的能源,地球表面的环境温度也是如此(有一些地理和时间变化)。[20,22] 因此,自然界的热管理解决方案可用于开发更高效的建筑材料。各种光子反射器和热
从月球,火星到太阳系,太阳,甚至系外行星的中央机构,深空探索[1] [1]促进了对太阳系和宇宙的形成和演变的研究,尤其是在追踪生命的起源方面。高能通量密度的固有特征确定空间检测器在宇宙微波背景辐射温度为2.7 k的情况下通过辐射冷却完全散发热量。因此,主动制冷技术是高信噪比(SNR)(SNR)的至关重要的保证,以及由于空间探索的高度准确性,可探索太空的准确性,并探索了深度探索[2] [2] [2] [2]。在中国,当前的轨道制冷系统几乎在液氮温度范围内工作[3]。到目前为止,关于液体液和液态温度温度较低的空间制冷技术的相应发展仍处于起步阶段,并且在实验室研究中仅研究了几种冷冻冷却器原型[4,5]。但是,近年来,中国促进的太空天文学计划需要
摘要:使用Vo 2在智能窗口中进行辐射冷却 - 一种动态的热管理材料,由于其太阳能和发射率可调性,因此具有增强建筑物节省能源的潜在兴趣。然而,目前缺乏与多层系统中VO 2薄片微结构对发射率调节的影响有关的研究。本研究通过操纵VO 2薄膜中的孔隙率来处理VO 2/Znse/iTo/glass Fabry- perot(F – P)型腔系统的热色素和发射率性能。该设备是通过商业上可行的物理蒸气沉积方法(例如溅射和热蒸发)制造的,最适合批量生产。用多孔VO 2的优化样品提供了增强的长波红外(LWIR)发射率≥0.4≥0.4≥0.4,与密集的VO 2相比,保持高可见透明度T LUM(AVG)约为41%。进行有限的差异时间域(FDTD)模拟,以进一步了解效果
然而,在白天,辐射冷却需要减轻太阳辐射的影响,而太阳辐射的影响远远大于冷却潜力。11,12因此,理想的日间被动辐射冷却器需要高太阳反射率和良好的中红外发射率。13–16 最近的研究已经调查了使用光谱选择性表面的方法,这些方法可以最大限度地减少太阳吸收,同时最大限度地提高中红外波长的发射。17–22 然而,这些专门的光子结构价格昂贵且可能不易获得。与制造复杂的光子结构相比,基于聚合物化学键在分子水平上进行设计提供了一种更方便、更可扩展的途径来调节红外特性,从而实现高冷却效率。在各种聚合物中,醋酸纤维素 (CA) 预计具有丰富的化学键,例如 C–O 和 C–O–C,它们在与大气透明窗口(8–13 毫米)重叠的波段中呈现出理想的红外发射率。 23,24 因此,可以实现良好的红外热量消散。
会议论文会议1(基本)开发能源绩效评估的建模方法:研究峰会室:Grand Ballroom 9主席:Patrick E Ryan,Patrick E Ryan,Hanson Professional Services,Hanson Professional Services,Springfield,IL Papers in Cession中描述了使用模型量化模型来量化在辐射冷却,动力降温,动力降低,电力,脱水和农业应用程序中的能源节省和系统性能。1。使用Urban Building Energy建模来量化辐射冷却的节能潜力(IN-24-C001)Zhaoru Liu,Fan Bu和Da Yan,Ph.D.在校园建筑物(IN-24-A001)的电力棚估算基线模型的性能(学生1)和Jordan D. Clark博士,S-B-A成员2,(1)俄亥俄州立大学,哥伦比亚大学,俄亥俄州,俄亥俄州,俄亥俄州,俄亥俄州大学,俄亥俄州州立大学,俄亥俄州大学,俄亥俄州3号。使用基于遗传算法的灰色盒建模(IN-24-A002)RAWISHA SERASIGNHE,研究助理,学生1和Jordan D. Clark博士,S-B-A成员2,(1)俄亥俄州立大学,俄亥俄州哥伦布,俄亥俄州州立大学,(2),(2)