[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂
摘要 医疗保健技术的进步要求开发高效、微型的植入式医疗设备。本文介绍了一种用于头皮生物医学应用的超宽带植入式天线,涵盖工业、科学和医疗 (ISM)(2.4 − 2.48 GHz)频段。所提出的天线安装在 0.1 − mm 厚的液晶聚合物 (LCP) Roger ULTRALAM(tan δ = 0.0025 和 ε r = 2.9)上,用作覆盖层和基底层的介电材料。LCP 材料因其柔韧性、顺应性结构和生物相容性等理想特性而广泛用于制造电子设备。为了保持电气小辐射器的能力并实现最佳性能,所提出的天线的体积设计为 9.8 mm3(7 mm × 7 mm × 0.2 mm)。在辐射贴片中增加短路针和开口槽,以及在接地平面中增加封闭槽,有利于天线的小型化、阻抗匹配和带宽扩展。值得注意的是,该天线在 ISM 频段的峰值增益为 − 20.71 dBi,阻抗匹配带宽为 1038.7 MHz。此外,根据基于低特定吸收率的 IEEE C905.1-2005 安全指南,该天线可以安全使用。为了评估植入式天线的性能,在均质和异构环境中进行了有限元仿真。为了验证,在装满碎猪肉的容器中进行测量。模拟结果与测量结果一致。此外,还进行了链路预算分析,以确认无线遥测链路的稳健性和可靠性,并确定植入式天线的范围。
FCC 声明 1. 本设备符合 FCC 规则第 15 部分的规定。操作时须遵守以下两个条件:(1) 本设备不得造成有害干扰。(2) 本设备必须接受任何接收到的干扰,包括可能导致设备意外操作的干扰。2. 未经合规负责方明确批准的变更或修改可能会导致用户无权操作本设备。注意:本设备已经过测试,符合 FCC 规则第 15 部分对 B 类数字设备的限制。这些限制旨在为住宅安装提供合理的保护,防止有害干扰。本设备会产生、使用并能辐射射频能量,如果没有按照说明安装和使用,可能会对无线电通讯造成有害干扰。但是,并不保证在特定安装中不会发生干扰。如果本设备确实对无线电或电视接收造成有害干扰(可通过关闭和打开设备来确定),则建议用户尝试通过以下一种或多种措施来纠正干扰:重新调整或重新放置接收天线。增加设备与接收器之间的距离。将设备连接到与接收器所连接电路不同的电路插座。咨询经销商或经验丰富的无线电/电视技术人员以获取帮助。FCC 辐射暴露声明本设备符合针对不受控环境设定的 FCC 辐射暴露限制。安装和操作本设备时,辐射器和身体之间的距离应至少为 20 厘米
传统上,NASA主要依靠泵送的单相液体系统来通过单相辐射器收集,运输和拒绝热量。在航天飞机轨道机上使用的热排斥系统由嵌入蜂窝结构中的250多个小的一维管组成。通过对流转移到管壁上,通过蜂窝结构进行传导,最后通过辐射到空间。NASA目前正在开发核电推进发动机,以供下一代航天器向火星及其他地区开发,这些航天器需要具有性能能力的热排斥系统要比当前系统提供的功能要好得多。加热管的起源可以追溯到60年来,但仍有新想法的余地。传统的热管由一个开放的绝热区域组成,一个网状灯芯衬在管壁的内部,有助于从冷凝器侧传输到蒸发器侧。在新墨西哥技术(NMT)开发的一种仿生,多功能概念具有一个由径向分级的相互连接的孔组成的结构,并且可以实现纵向的热管,以使热管允许辐射流动以及纵向流动。这种配置促进了从蒸发器末端到管壁的热对流,并在整个散热器侧面更均匀地散发热量。过去在NMT上使用具有仿生设计的样品进行的实验表明,在局部加热时,当流体通过闭环多孔层时,可能会引起热能的对流传输。持续调查的目的是突出仿生结构如何同时减少热排斥系统质量所需的热性能。关键词:仿生设计,热管,深空,灯芯层,
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
对流在各种天然和人为的过程中起着至关重要的作用,从而可以通过流体运动有效地传热。本综合指南提供了对流的可访问概述,其中包含实践示例,以说明其原理。,它是寻求阐明这一基本科学概念的教育工作者的宝贵资源。引人入胜且信息丰富,该指南非常适合增强对热动态的理解。对流涉及通过流体(液体或气体)的移动加热的转移,因为加热颗粒会上升,而较冷的颗粒下沉,从而产生圆形流动。这个过程对于理解自然现象和技术应用至关重要,这是物理,气象学和工程学的关键概念。对流的一个经典例子是在炉子上加热水,热水升至表面,冷水沉入底部,形成连续的循环,从而有效地在整个水中转移热量。对流传热的公式可以表示为q = haΔt,强调了诸如传热速率,对流传热系数,表面积和温度差等因素的重要性。这22个对流示例的汇编展示了从日常家庭活动到大规模环境模式的不同环境中的基本过程。冷却和冷凝时,温暖的空气会升起,形成云和降水。同样,随着热量从其表面散发的,一杯咖啡会冷却,而森林通过吸收热量并引起空气运动来调节气候。从沸水到洋流,大气循环,房屋中的散热器,热气球,海风,地球的披风对流,加热汤,熔融冰,熔岩灯,太阳能电池板,冰箱线圈,汽车辐射器和空调,每个例子都在行动中表明了暴力。在烤箱中,热空气循环均匀地煮食物,就像间歇泉爆发地下水被地热能加热一样。板块构造是由于地球核心的热量引起的,导致构造板的运动。房间风扇循环空气以调节室温,人体血液循环通过对流调节体温。对流不仅限于科学概念;它在我们的日常经历中起着作用。示例包括在炉灶上烹饪,洗热水淋浴,使用烤面包机,地板加热系统以及在生产线上晾干衣服。在现实情况下,对流冷却笔记本电脑,铁衣,在建筑物中提供自然通风,加热茶水和使用壁炉。对流还塑造大气现象,例如陆地和海风,云层,季风风,飓风地层以及山和山谷的微风。通过外部手段(例如风扇或泵)运动在工程,气象学和环境研究等各个领域都起着至关重要的作用。了解这些类型对于设计过程和系统至关重要。例子包括在沸水中的自然对流,供暖,海洋电流,冰箱中的空气循环以及风形成。在极端情况下,这些事件可能导致严重的雷暴,甚至龙卷风。对流还可以通过流体中分子的质量运动有效地传输热量,这使得在许多应用中至关重要。对流在塑造天气模式和影响日常生活中起着关键作用,从汽车冷却系统到工业冷却塔,太阳能热水板,地热加热系统,散热器加热器和冷凝器盘绕冰箱的冰箱。认识到对流的机制和示例强调了其在教育和实际情况下的重要性。当热量通过较热的材料与较冷的材料配对的较热材料的上升,因此会发生对流。这种现象涉及质量在流体中的运动,通常导致气象学的向上方向和地质地壳下地壳下方的慢速物质运动。对流在各种日常生活中起着至关重要的作用,包括开水,散热器操作,蒸杯热茶,冰融化,冷冻食物解冻,强迫对流等等。在气象学中,对流与天气条件(例如对流云和斜纹线条)紧密相关。此外,热空气气球依靠加热的空气升起来航行天空。理解对流的定义为探索其在不同研究领域的各种应用和发生的情况提供了坚实的基础。对流在各种自然和人为的过程中起着至关重要的作用。在热气球中,温度差异引起的浮力会随着热空气被困在里面而提升气球。要下降,其中一些热空气被释放,使较冷的空气进入并减少浮力。该原理也称为堆栈效应或烟囱效应,由于室内和室外空气之间的密度差异,空气进出建筑物。在地质学中,对流电流是地球地幔缓慢运动的原因。 内部的热量通过地幔升起,使其在表面冷却。 此过程驱动板块构造,导致火山形成。 重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。 海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。 在恒星中,对流区域在转移能量中起着至关重要的作用。 等离子体加热时,冷却的血浆下降时会产生循环模式。 对流不限于这些例子;可以在各种人类和自然现象中观察到。 既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。在地质学中,对流电流是地球地幔缓慢运动的原因。内部的热量通过地幔升起,使其在表面冷却。此过程驱动板块构造,导致火山形成。重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。在恒星中,对流区域在转移能量中起着至关重要的作用。等离子体加热时,冷却的血浆下降时会产生循环模式。对流不限于这些例子;可以在各种人类和自然现象中观察到。既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。