摘要 - 软马克斯函数用作放置在神经网络输出层中的激活函数。它允许提取输出类的概率,同时向模型引入非线性。在低端FPGA领域,深神经网络(DNN)的实现需要探索优化技术,以提高计算效率和硬件资源消耗。这项工作探讨了使用Taylor和Pad'E近似方法以及带有查找表(LUTS)的插值方法来促进软效果的近似计算技术。引入近似值旨在减少所需的执行时间,同时降低SoftMax函数产生的结果的精度。使用均方根误差(RMSE)评估每个实现,以进行准确评估,并通过测量执行时间来验证个人绩效。从我们的评估中,使用LUTS的二次插值实现了最低的错误,但是在性能方面,泰勒和垫子近似显示了更好的执行时间,这突出了数值准确性和功耗之间的现有设计权衡。索引项 - 评估计算,高级合成,推理算法,神经网络压缩,多层感知器。
在本文中,我们介绍了第一个综合IDS框架,该框架结合了效果效果 - 映射技术和级联模型,以解决上述问题。我们称我们提出的解决方案在工业互联网(Pignus)中提出的深度学习模型入侵检测。Pignus集成了自动编码器(AE),以选择最佳特征,并将级联反向后背传播神经网络(CFBPNN)进行分类和攻击检测。级联模型使用从初始层到输出层的互连链接,并确定正常和异常的行为模式并产生完美的分类。我们在五个流行的IIOT数据集上执行了一组实验:气管管道,储水箱,NSLKDD+,UNSW-NB15和X-IIOTID。我们将Pignus与最先进的模型进行了比较,从精度,假阳性比率(FPR),精度和召回率进行了比较。结果表明,Pignus提供的精度超过95%,平均比现有型号高25%。在其他参数中,Pignus显示出20%的FPR,10%的回忆10%,精度提高了10%。总的来说,Pignus证明了其效率为IIOTS的IDS解决方案。因此,Pignus是IIOTS的有效解决方案。
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
最近的许多研究都集中在生物学上可行的监督学习算法变体上。然而,运动皮层中没有老师来指导运动神经元,大脑中的学习取决于奖励和惩罚。我们展示了一种生物学上可行的强化学习方案,适用于具有任意层数的深度网络。网络通过选择输出层中的单元来选择动作,并使用反馈连接将信用分配给负责此动作的连续较低层中的单元。做出选择后,网络会得到强化,没有老师来纠正错误。我们展示了新的学习方案——注意力门控大脑传播 (BrainProp)——在数学上等同于错误反向传播,每次针对一个输出单元。我们展示了深度全连接、卷积和局部连接网络在经典和硬图像分类基准(MNIST、CIFAR10、CIFAR100 和 Tiny ImageNet)上的成功学习。 BrainProp 的准确度与标准误差反向传播相当,甚至优于最先进的生物启发式学习方案。此外,学习的反复试验性质与有限的额外训练时间有关,因此 BrainProp 的速度要慢 1-3.5 倍。因此,我们的研究结果为如何在大脑中实施深度学习提供了新的见解。
这项研究旨在使用深卷积神经网络(CNN)开发实时戴面膜检测系统。这在2019年冠状病毒病(Covid-19)中至关重要,这是对那些不早些时候不戴口罩的人提醒的,从而减少了病毒的传播。由于Covid-19通过呼吸液滴和戴面膜涂抹的杂志扩散,我们提出的研究利用计算机视觉技术,特别是图像过程来检测掩盖和未掩盖的面孔。我们采用定制的CNN体系结构,该体系结构由五个卷积层组成,其次是最大层和完全连接的(FC)层。最终输出层利用SoftMax激活进行分类。该模型使用优化的图层组合和参数值进行更新。我们正在开发使用数码相机作为输入设备的应用程序。该应用程序利用一个包含11,792个图像样本的数据集,该数据集用于80:20的比例训练和测试目的。实时测试是使用相机捕获的人类受试者进行的。实验结果表明,在实时视频测试中,CNN方法在培训数据上达到了99%的分类精度,而98.83%的分类精度为98.83%。这些发现表明,使用CNN的实时面膜检测系统有效地性能。
图1:A)EEG范式。参与者查看了50张室内场景的图像,并被要求在幕后精神计划可能的出口路径。散布的捕获试验参与者必须响应屏幕上显示的出口路径是否对应于先前试验中的任何出口路径。b)EEG RDMS。我们计算了每个脑电图时间点的RDM(相对于图像开始,每10毫秒从-200到+800 ms)。DNN RDMS。我们从从2D,3D和语义任务训练的RESNET50 DNN的第四块和输出层中提取的激活中计算了RDM。d)NAM模型和RDM(Bonner和Epstein,2018年)。e)方差分区。我们计算了每个模型所解释的唯一脑电图方差,从而揭示了不同的时间激活模式。线下方的线表明使用t检验(FDR校正的p <0.05)表示大量时间。f)不同模型的峰值潜伏期。条表示不同模型的峰值潜伏期。错误条表示16名受试者的标准偏差。恒星上方的恒星表明不同模型之间的显着差异(*p <0.05,** p <0.01,*** p <0.001,t检验fdr校正)。
摘要 — 中风是一种疾病,当血管堵塞或出血时,会中断或减少大脑的血液供应,导致脑细胞开始死亡。它会导致多个器官残疾或意外死亡。中风患者的治愈时间取决于器官的症状和损伤。如果患者及时发现并缓解危险,则多达 80% 的病例可以避免中风。随着医学成像机器学习的进步,早期识别中风的可能性很大,这对诊断和了解这种致命疾病起着至关重要的作用。考虑到上述情况,在本文中,我们提出了一种卷积神经网络 (CNN) 模型作为一种解决方案,可在早期预测患者中风的概率,以实现最高的效率和准确性。该模型是多层感知器的改进版本,它包括信息、输出层和许多秘密层。预测模型中使用的数据集是医疗保健数据集,它具有 11 个特征,并且只有一个目标类作为结果。因此,我们还应用了一些特征选择方法来提取分类中贡献最大的特征。将模型准确率与其他机器学习模型进行了比较,发现该模型比其他模型更好,准确率达到 95.5%。索引术语 — 中风预测、机器学习方法、数据挖掘、神经网络、CNN
摘要 — 中风是一种疾病,当血管堵塞或出血时,会中断或减少大脑的血液供应,导致脑细胞开始死亡。它会导致多个器官残疾或意外死亡。中风患者的治愈时间取决于器官的症状和损伤。如果患者及时发现并缓解危险,则多达 80% 的病例可以避免中风。随着医学成像机器学习的进步,早期识别中风的可能性很大,这对诊断和了解这种致命疾病起着至关重要的作用。考虑到上述情况,在本文中,我们提出了一种卷积神经网络 (CNN) 模型作为一种解决方案,可在早期预测患者中风的概率,以实现最高的效率和准确性。该模型是多层感知器的改进版本,它包括信息、输出层和许多秘密层。预测模型中使用的数据集是医疗保健数据集,它具有 11 个特征,并且只有一个目标类作为结果。因此,我们还应用了一些特征选择方法来提取分类中贡献最大的特征。将模型准确率与其他机器学习模型进行了比较,发现该模型比其他模型更好,准确率达到 95.5%。索引术语 — 中风预测、机器学习方法、数据挖掘、神经网络、CNN
1) https://aws.amazon.com/jp/ 2) https://cloud.google.com/products/ai/ 3) https://www.ibm.com/watson/ 4) https://azure.microsoft.com/ja-jp/services/cognitive-services/ 5) https://trends.google.co.jp/trends/ 6) https://colab.research.google.com/ 7) http://jupyter.org/ 8) https://www.anaconda.com/ 9) http://archive.ics.uci.edu/ml/datasets/Iris 10) http://lib.stat.cmu.edu/datasets/boston 11) https://archive.ics.uci.edu/ml/datasets/wine+quality 12) http://yann.lecun.com/exdb/mnist/ 12) http://megaface.cs.washington.edu/ 14)ReLU(Ramp函数):激活函数之一。当输入值为0以下时,变为0,当大于1时,则按输入原样输出。 15)Softmax函数:将判断结果以百分比的形式输出到输出层的各个单元。一般取百分比最高者作为答案。 16)铃木隆宏,《工作的消失》,讲谈社,2017,第76页 17)新井纪子,《人工智能与不会读教科书的孩子》,东洋经济,2018年 18)小川宏,《中小学编程教育及其在地区的实践》,日本艺术设计协会期刊第77期,2018年,第50-51页 19)迈克尔·施密特、Hod Lipson,《从实验数据中提炼自由形式的自然法则》,2009年,《科学》第324卷 计算机从摆动的钟摆的运动中推导出运动定律。 20)大脑中的侏儒:脑外科医生彭菲尔德绘制的图表,显示了人类大脑皮层的运动区和体感区与身体各部位之间的对应关系。
简介 机器学习 (ML) 方法在心理健康和相关研究中得到越来越多地应用。在我们上一篇论文中,我们讨论了两种 ML 方法,即逻辑回归和 k 均值聚类。1 在本报告中,我们重点介绍两种更先进的 ML 方法,即支持向量机 (SVM) 和人工神经网络 (ANN),以及它们在精神病学中的应用。SVM 是一种用于对标记结果进行分类的监督学习方法。SVM 应用来自每个类别的少量样本(称为“支持向量”)来构建分类器,将样本分成不同的类别。2 SVM 是线性判别函数的扩展,线性判别函数是一种流行的监督学习统计方法,因为它试图适应非线性判别函数以实现更精确的分类。3 SVM 已被广泛应用,包括在精神病学领域。例如,在重度抑郁症 (MDD) 研究中,SVM 被用于通过人口统计学和临床变量(如年龄、性别、教育水平、药物等)从健康对照组中识别出 MDD 患者。4 这也是神经成像中的一种流行技术。5 6 我们将在下一节进一步讨论 SVM。ANN 由许多称为“人工神经元”的简单单元组成。ANN 的主要组成部分是输入层、隐藏层和输出层。计算机科学家已经开发出 ANN 来模仿生物神经网络,通过建立模型来模仿人类大脑从训练数据中学习的过程,而无需任何数据的先验知识。7 例如,在