2.1 奥地利地图 ................................................................................................................14 2.2 2018 年奥地利能源系统按燃料和部门划分的概况 ........................................................15 2.3 2000 年至 2018 年奥地利按来源划分的一次能源供应量 .............................................................16 2.4 2018 年国际能源署成员国一次能源供应量细分 .............................................................16 2.5 2000 年至 2018 年奥地利按部门划分的最终消费总量(TFC) .............................................18 2.6 2018 年奥地利按来源和部门划分的最终消费总量(TFC) .............................................18 2.7 1978 年至 2018 年奥地利煤炭在不同能源供应中的占比 .............................................21 2.8 2000 年至 2018 年奥地利按部门划分的煤炭和煤炭产品消费量 .............................................21 3.1 2018 年奥地利按来源划分的发电量 .............................................................................29 2018 ................................................30 3.3 2000-2018 年奥地利各来源电力供应情况 ..............................................31 3.4 2000-2018 年各国电力净进出口情况 ..............................................32 3.5 2000-2018 年奥地利各消费部门电力消费(TFC) .............................................33 3.6 2018 年国际能源署成员国电价 .............................................................38 3.7 2012-2018 年奥地利及部分国际能源署国家的电价 .............................................39 3.8 奥地利输电网 .........................................................................................40 4.1 1978-2018 年天然气在奥地利能源系统中的份额 .............................................47 4.2 2000-2018 年奥地利天然气总供应量概览 .............................................48 4.3 2018-2019 年奥地利沼气产量及占天然气总供应量的份额2000-18 年 ..................................49 4.4 2000-18 年奥地利各部门天然气消费量 ..............................................50 4.5 2013-18 年 CEGH 贸易发展情况 ..............................................................51 4.6 奥地利天然气基础设施 ......................................................................................55 4.7 2018 年 IEA 成员国天然气价格 ......................................................................60 5.1 1978-2018 年奥地利石油在能源生产、一次能源供应量、电力和总碳排放量中的比重 .............................................................................................68 5.2 2008-2018 年奥地利石油需求 .............................................................................................69 5.3 2008-2018 年各国原油净贸易量 .............................................................................69 5.4 2008-2018 年各国石油产品净贸易量 .............................................................................70 5.5 2018 年奥地利炼油产量 ..............................................................................................71 5.6 2019 年第一季度国际能源署汽车柴油价格比较 ..............................................................72 5.7 2019 年第一季度国际能源署无铅汽油 (95 RON) 价格比较 .............................................................73 5.8 2019 年第一季度国际能源署燃料油价格比较 .............................................................................73 5.9 奥地利石油基础设施地图 .............................................................................................75 6.1 2005 年至 2030 年非 ETS 排放和欧盟目标 .............................................................82 6.2 1990 年至 2017 年奥地利各部门温室气体排放量 .............................................................82 6.3 1990 年至 2018 年奥地利能源相关二氧化碳排放和主要驱动因素 .............................................83 6.4 2000 年至 2017 年奥地利和部分国际能源署成员国的二氧化碳强度..................84 6.5 1990 年至 2017 年奥地利及部分 IEA 成员国电力和热力发电的二氧化碳强度 ................................................................................................................84 6.6 1990 年至 2018 年奥地利各部门能源相关二氧化碳排放量 .............................................................................................85
图 1 – 2024 年 1 月 10 天干旱指标 10 图 2 – 全球太阳辐射(全球太阳图集) 11 图 3 – 各国平均辐射 11 图 4 – 各国输电网扩展。ECCO 基于 ESMAP 数据阐述。12 图 5 – 适合大规模光伏安装的实际区域 12 图 6 – 大规模光伏潜力图。ECCO 基于全球太阳图集数据阐述 13 图 7 – 带有当前电力基础设施的大规模太阳能光伏潜力图细节。ECCO 基于全球太阳图集数据阐述。13 图 8 – 各国实际区域土地份额。ECCO 基于 ESMAP 数据阐述。14 图 9 – 各国大规模光伏理论容量。ECCO 阐述。15 图 10 – 全球风能密度 16 图 11 – 风能潜力图。 ECCO 根据全球风能地图集数据进行阐述,16 图 12 – 各国风能平均功率密度。17 图 13 – 各国陆上风能理论容量。ECCO 阐述。 17 图 14 – 北岸可再生能源装机容量——当前与 2030 年 NECP 的对比 19 图 15 – 南岸可再生能源装机容量——当前与 2030 年 NECP 的对比 22 图 16 – 地中海东部的市场模型 23 图 17 – Desertec 项目基础地图 24 图 18 – Entso-e 电网地图 27 图 19 – 各国能源供应总量(联合国,2021 年) 30 图 20 – 各国二氧化碳排放总量(Climatewatch,2024 年) 30 图 21 – 各国战略与 2030 年当前可再生能源装机容量对比 31 图 22 – 按来源和国家划分的工业最终消费份额(联合国,2021 年) 32 图 23 – 工业低温热能电气化份额,约 30% 为 1 TW [TJth] 32 图 24 –工业中高温供热的电力消耗约 30% 1 TW [TJth] 33 图 25 – 北非国家对地中海的出口,不包括石油和天然气 34 图 26 – 欧盟 CBAM 中包含的产品 35 图 27 – 按来源和国家/地区划分的电力生产份额(联合国,2021 年) 36 图 28 – 按燃料和国家/地区划分的化石燃料减排份额约 1 TW 36 图 29 – 按燃料和国家/地区划分的建筑物最终消费份额(联合国,2021 年) 37 图 30 – 工业中电气化建筑有用热能份额约 1 TW [TJth] 37 图 31 – 烹饪用电气化有用热能份额约 1 TW [TJth] 38 图 32 – 按方式和国家/地区划分的运输消费份额(联合国,2021) 38 图 33 – 1 TW [车辆] 中电气化占公路运输比重约为 4% 39 图 34 – 1 TW 可再生能源对地中海能源系统的影响 39 图 35 – 1 TW 可再生能源避免的二氧化碳排放量 40 图 36 – 1 TW 可再生能源产生的化石燃料减少量 40 图 37 – 氢气生产项目 (IEA) 41 图 38 – 欧盟氢能骨干计划 42 图 39 – 已实现或授权的 LNG 再气化能力(黄色)和预授权能力(紫色)。ECCO 详细说明。 44 图 40 – 根据国际能源署公布的承诺情景,天然气在一次能源供应总量中的作用 45 图 41 – 通向欧盟的天然气供应走廊和流量(ENTSOG,2024 年) 45 图 42 – 通向欧盟的天然气供应走廊分布(ENTSOG,2024 年) 46
斯洛文尼亚的能源结构十分多样化——在发电结构中,1/3 为可再生能源 (RES)、1/3 为核能、1/3 为化石燃料。家用褐煤是保障供应安全的重要因素。斯洛文尼亚小型能源系统的特点是,斯洛文尼亚总发电量的三分之一和关键的辅助服务由一座 600 兆瓦火力发电厂提供,该火力发电厂利用附近地下褐煤矿的褐煤。天然气在一次能源消费中约占 10%,主要用于工业和配电。另一方面,电网与邻近成员国的互联互通非常紧密(包括与匈牙利的最后一次互联互通,目前正处于建设的最后阶段),由于最近完成的系统级智能电网项目,电网高度可控,未来的挑战将转移到电网上,以支持分散可再生能源发电的整合。2021 年,斯洛文尼亚政策制定者在能源和气候政策领域忙碌不已。今年 7 月通过的《关于 2050 年长期气候战略的决议》为斯洛文尼亚的气候战略设定了明确的目标,即通过有效管理能源和自然资源,在保持高水平经济竞争力的同时,到 2050 年过渡到净零排放并实现气候中和。为实现雄心勃勃的国家和欧盟气候目标,斯洛文尼亚政府 2021 年的一项关键任务是制定基于公平转型原则的煤炭淘汰和煤炭地区重组国家战略,该战略于 2022 年 1 月通过,并确定 2033 年为斯洛文尼亚的煤炭淘汰日期。欧盟公平转型基金和国家财政资源支持的新投资将通过不同的能源、社会、生态和研究项目促进各地区振兴。此外,在欧盟“适合 55 年”立法方案框架内对欧盟排放交易体系指令的修订中,斯洛文尼亚正努力成为现代化基金的受益者,可用的财政资源将极大地促进国家能源转型进程。对斯洛文尼亚来说,一个关键方面是将天然气和核能纳入欧盟分类标准,使新项目有资格获得可持续融资。斯洛文尼亚认为天然气是一种重要的过渡能源,有助于在 2050 年前以经济有效的方式实现气候中和社会,同时确保供应安全,特别是在转型中的煤炭地区。核能也是如此。克尔什科核电站 (NEK) 的生产和所有权由斯洛文尼亚和克罗地亚平等分享,占斯洛文尼亚电力产量的 30% 以上。2016 年,NEK 的使用寿命延长至 2043 年。同时,政府正在讨论建造第二座核电站的可能性——该决定将持续到 2027 年。鉴于欧盟 2030 年更高的气候(以及随之而来的可再生能源)目标,斯洛文尼亚的一个关键行动重点是加速可再生能源的比重。必须指出的是,必须在国家和地方层面找到实现国家气候目标和保护环境需求之间的适当平衡。斯洛文尼亚在欧盟中拥有最多的 Natura 2000 保护区(占国土的 38%),这使得可再生能源项目的空间规划非常具有挑战性。因此,符合国家利益的可再生能源项目(如大型水电站)应从简化的许可程序中受益。此外,对输电网和配电网的投资应支持可再生能源的有效整合。在天然气领域,国家能源和气候计划中的指示性目标是到 2030 年实现电网中至少 10% 的可再生甲烷或氢气。天然气管道系统将逐渐成为脱碳的推动者,尤其是在天然气使用历史悠久工业领域。电力行业也有机会,主要是满足额外的电力需求,并实现从煤炭到天然气的转换,后来再到可再生气体的转换。一个很好的例子是卢布尔雅那最大的热电联产厂从煤炭转换为天然气。这一转换将于 2022 年完成,将使该工厂的煤炭使用量减少 70%,并大幅减少斯洛文尼亚首都的二氧化碳和颗粒物排放。预计将从合成甲烷中额外生产电力,并推广试点发电转气电力行业也存在机遇,主要是满足额外的电力需求,并实现从煤炭到天然气的转换,以及随后再到可再生气体的转换。一个很好的例子是卢布尔雅那最大的热电联产厂从煤炭到天然气的转换。转换将于 2022 年进行,将使该工厂的煤炭使用量减少 70%,并大幅减少斯洛文尼亚首都的二氧化碳和颗粒物排放量。预计将从合成甲烷中额外生产电力,并推广试点发电转气电力行业也存在机遇,主要是满足额外的电力需求,并实现从煤炭到天然气的转换,以及随后再到可再生气体的转换。一个很好的例子是卢布尔雅那最大的热电联产厂从煤炭到天然气的转换。转换将于 2022 年进行,将使该工厂的煤炭使用量减少 70%,并大幅减少斯洛文尼亚首都的二氧化碳和颗粒物排放量。预计将从合成甲烷中额外生产电力,并推广试点发电转气