输电网(又称“电表前”,电力通常通过给定的输电系统运营商(例如 PJM)出售给购电方),具体取决于项目位置。o 典型范围从 < 3 MW 到 20 MW,再到 100 MW 以上。
摘要:由于可再生能源发电广泛分布且受天气影响,可再生能源份额不断增长,使得电力系统模型中的功率流优化在计算上更加复杂。本文评估了两种降低具有存储扩展规划的输电网模型时间复杂性的方法。减少技术的目标是加速电网模型的线性最优功率流计算。这是通过选择少量代表性时间段来代表一整年来实现的。为了选择代表性时间段,使用层次聚类将按时间顺序相邻的小时或独立分布的耦合天聚合成时间序列聚类。通过目标值的误差和计算时间减少来评估聚合效率。此外,还分析了网络规模和并行计算效率对优化过程的影响。作为一个测试案例,考虑了德国最北部的石勒苏益格-荷尔斯泰因州的输电网,其情景对应于 2035 年。所考虑的情景的特点是安装的可再生能源份额很高。
系统操作员工具以确保电力系统的充足性......................................................................................................................................... 127 图 6.1. 短期供需平衡应对突发事件的挑战......................................................................................................................................... 135 图 6.2. 风电和太阳能光伏发电装机容量的实时监控和预测确定性分布......................................................................................................... 138 图 6.3. 设定点变化对供需平衡和频率的影响......................................................................................................................... 139 图 6.4. 接近实时交付时影响供需平衡的 98% 置信区间减小......................................................................................................... 141 图 6.5. 根据所考虑的时间范围,2035 年典型时刻的可用储备......................................................................................................................... 143 图 6.6. 1,200 MW 发电机组损失后的储备激活顺序......................................................................................................... 144 图 6.7.图 7.1. 2019 年和 2035 年 3 月中午的典型预期 15 分钟备用要求 ...................................................................................................... 149 图 7.1. 2019 年和 2035 年的典型电力生产和负荷分布 ............................................................................................. 163 图 7.2. 当前和 2035 年法国输电网南北轴线上潮流的预期演变 ............................................................................................. 164 图 7.3. 德国风力发电对法国输电网的影响 ............................................................................................................................. 165 图 7.4. 2025 年、2030 年和 2035 年,在缺乏网络改造的情况下,法国输电网的主要制约因素 ............................................................................................. 166 图 7.5. 高可再生能源情景下 2035 年目标网络的额外限制 ............................................................................................................. 169海上风电场连接示例 ................................................................................................................ 172 图 7.7. 2040 年与 2020 年相比的新互连机会 ................................................................................ 174 图 7.8. 架空电力线的年龄金字塔 ...................................................................................................... 175 图 7.9. 风电场安装前后区域线路的电力流动 ...................................................................................................... 177
更广泛的背景 许多电力行业脱碳计划要求未来 4 80% 的电力由太阳能和风能提供。然而,太阳能和风能对发电结构的贡献程度将受到太阳能和风能资源的时间和空间变化以及电力需求的时间和位置以及电力系统的其他特征(例如,输电网、能源存储、需求管理、可调度电力、可靠性要求等)的限制。。在这里,我们分析了 36 年的全球每小时天气数据,以评估美国太阳能和风能的地球物理资源特征。我们发现,要实现太阳能和风能满足的 B 80% 的需求,需要美国范围的输电网或 12 小时的能源存储( B 5.4 TW h)。超过 80% 后,克服季节和天气变化所需的能量存储量或多余的太阳能/风能发电量将迅速增加。今天,这将非常昂贵。相对低成本、可调度、低 CO 2 排放电力的可用性将消除对这种额外太阳能和风能或能量存储容量的需求,同时满足数十年时间范围内的可靠性要求。
电力市场放松管制后,输电网成为关键问题。拥塞、定价、运营和管理只是电力行业重建电力系统过程中出现的诸多难题和重大问题中的几个例子。当输电网无法在负荷需求下传输电力时,就会发生拥塞。系统拥塞可能导致不经济的运行、停电、互联系统中断以及系统扰动。在新的竞争性电力市场中,拥塞控制对于电力系统的高效、安全和稳定运行至关重要。拥塞管理技术形式多样,不同国家采用不同的方法来确保其电网平稳运行。本文探讨了多种拥塞管理方法,并将它们分为不同的部分。技术方法包括优化技术与专家系统(OPES)、柔性交流输电系统(FACTS)、储能与灵活资源(ESFR);非技术方法包括重新调度、负荷削减、市场分割和节点交换(CNE)。本文对几部被推荐用于交通拥堵管理的重要文献进行了批判性分析,并详细介绍了不同国家采用的不同方法。
本功能规范文件描述了为客户海上资产与现有陆上输电网(包括陆上补偿设施 (OCC) 和海上变电站平台 (OSP))之间的整个输电链路提供输电监控和数据采集 (SCADA) 系统和数据通信/电信环境的要求。它与其他功能规范一起提供,涵盖 OSP 上的辅助系统和 OCC 中的系统的各个方面。
• 电力需求不断增长——脱碳意味着我们需要通过改变出行方式以及家庭和工作场所的供暖方式来满足能源需求。 • 通过以风能和太阳能等可再生能源为主导的能源系统为经济提供动力。 • 建设更强大的陆上和海上输电网,以支持可再生能源和不断增长的电力需求。 • 通过投资低碳国内发电能力来提高我们的能源安全。 • 在天气变化导致可再生能源发电量下降时,建立能源储存和与其他国家互联互通,以补充我们的系统。
高空间和时间分辨率电力系统模型 highRES 用于为英国和欧洲设计具有成本效益、灵活性和天气适应性的电力系统。该模型专门用于分析高比例可变可再生能源的影响并探索整合/灵活性选项。随着可再生能源在发电中的比例增加,电力需求和供应之间的不平衡将日益加剧。highRES 是一种高分辨率电力系统模型,它同时考虑基础设施规划(投资)和运营(调度)决策,以确定最具成本效益的策略来应对不断增长的间歇性可再生能源份额。它通过比较和权衡将可再生能源整合到系统中的潜在选项来实现这一点,包括扩展输电网、与其他国家互联、建设灵活发电(例如燃气发电站)、可再生能源削减和能源储存。highRES 以 GAMS 编写,其目标是在一系列单元和系统约束下,最大限度地减少电力系统投资和运营成本以满足每小时需求。它可以根据研究问题的要求、二氧化碳排放量以及各种储能方案的技术特性,对热发电机的各种技术特性(例如爬坡限制、最低稳定发电量、启动成本、最小启动和停机时间)进行建模。输电网使用线性传输模型表示。© 2022 由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。