骨关节炎 (OA)、类风湿性关节炎 (RA) 和腰痛等肌肉骨骼疾病是全球第二大致残原因,给社会带来了沉重的生理和经济负担 [1,2]。这类疾病的特点是组织退化和炎症活动,可导致慢性疼痛和严重的关节损伤 [3]。具体而言,骨关节炎关节因其承重特性,最容易受到关节软骨退化和滑膜炎症的影响,久而久之会导致关节功能和活动能力丧失。炎性细胞因子[如白细胞介素 (IL)-1、IL-6、肿瘤坏死因子 α (TNF α )] 和降解酶[如基质金属蛋白酶 (MMP)13、具有血小板反应蛋白基序 5 的解整合素金属蛋白酶 (ADAMTS5)] 等生物因素的过度表达会加速骨关节炎的进展,尤其是在关节损伤的情况下 [4]。软骨的无血管特性限制了其自我再生能力;因此需要及时的治疗干预来修复组织并抑制病情进一步进展 [5]。
这是该论文的已接受版本。记录版本可在 https://doi.org/10.1016/j.phanu.2021.100280 上找到。
Guzman 的能源管理服务包括位于丹佛市中心的调度中心的内部 24 小时市场运营、能源管理和交易团队。我们将内部能源管理团队视为可靠地为客户提供服务的关键和必需组成部分。我们的客户可以放心,我们始终为他们的最大利益而努力,他们永远不会被视为客户群中的“数字”,而第三方能源经理和大型电力营销商或零售能源供应商则可能出现这种情况。我们“为您而努力,与您合作”,以实现您的能源自由、节约和可再生能源目标,我们将共同建立电力合作伙伴关系。如果被选中,Guzman 将与芝加哥市合作,在芝加哥建立一个当地办事处,以管理该市的电力需求、当地参与和分布式发电计划。
摘要 使用简化的分层理论、通道模型实验和近陆架边缘系泊的观测诊断来研究内潮在驱动大陆坡示踪物输送中的作用。内潮的影响可以用斯托克斯漂移来解释,斯托克斯漂移分为两个不同的分量:一个由层厚度和速度的协方差驱动的弹丸分量,以及一个由速度跟随界面运动驱动的剪切分量。对于三层海洋,在模型实验和观测中,内潮的向岸传播驱动斯托克斯输送,该输送在表面和底层向岸,在跃层向离岸。这种反转结构是由于弹丸分量在边界附近占主导地位,而剪切分量在跃层占主导地位。在观测诊断中,斯托克斯输送不会被欧拉输送抵消,欧拉输送主要沿着测深轮廓线方向。如果大陆架上有示踪剂汇,则内潮的斯托克斯漂移会提供系统性的大陆架示踪剂输送,这些示踪剂汇在表面层或底层中携带。相反,如果大陆架上有示踪剂源,并且大陆架示踪剂羽流预计会沿着跃层被带到海上,则示踪剂输送会导向海上。内潮导致的示踪剂输送被诊断为热量、盐和硝酸盐。深度积分硝酸盐通量被导向大陆架,为富饶的大陆架海提供营养物质。
怀孕期间治疗疾病的一个主要挑战是,小分子治疗剂是通过胎盘运输的,并引起了发育中的胎儿的毒性。胎盘负责提供营养,清除废物并保护胎儿免受有毒物质的侵害。因此,胎盘充当母亲和胎儿之间的生物疗法,可用于药物输送。纳米颗粒技术通过控制治疗剂与胎盘相互作用,为怀孕期间的安全药物提供了机会。在这篇综述中,我们提出了专门设计的纳米颗粒药物递送技术,以利用胎盘作为专门治疗母体,胎盘或胎儿疾病的生物屏障,同时最大程度地减少脱离剂量的毒性毒性。此外,我们讨论了怀孕期间实施药物输送技术的机会,挑战和未来方向。©2020 Elsevier B.V.保留所有权利。
了解外用药物在人体皮肤上的输送和扩散对于药物和化妆品研究都至关重要。这些信息在药物开发的早期阶段至关重要,可以识别出以最佳浓度输送到目标皮肤区的最有希望的成分。有不同的皮肤成像方法(侵入性和非侵入性)可用于表征和量化药物在体内和体外人体皮肤内的时空分布。本综述的第一部分详细介绍了侵入性成像方法(放射自显影、MALDI 和 SIMS)。第二部分回顾了可应用于体内的非侵入性成像方法:i)荧光(常规、共焦和多光子)和第二谐波产生显微镜;ii)振动光谱成像方法(红外、共焦拉曼和相干拉曼散射显微镜)。最后,提出了选择成像方法的流程图,以指导人体皮肤体外和体内药物输送研究。© 2020 Elsevier BV 保留所有权利。
Dimitrious Papahadjoupoulos 博士及其团队发现,蜗壳是由带负电荷的磷脂酰丝氨酸与钙相互作用形成的沉淀物。它们用于通过递送肽和抗原来提供疫苗。在纳米蜗壳(一种新型药物递送载体)中,目标药物分子被包裹在多层结构中,包括螺旋形薄片内的固体脂质双层。这种方法使用药物的蜗壳化来克服诸如溶解度差、渗透性和口服生物利用度差等问题。它们保护分子免受 pH、温度和酶等恶劣环境条件的影响。由于其表面和结构上同时具有亲水性和亲脂性形式,因此它可以同时包含亲水性和亲脂性药物分子。药物分子的包封负载能力由蜗壳的物理结构决定,而包封程序决定了形成的复合物的粒度。它可用于口服和全身给药生物活性物质,包括药物、DNA、蛋白质、肽和疫苗抗原。这种方法既可用于全身治疗,也可用于口服治疗,最终可能发展成为药物输送系统。这些因素将鼓励研究人员研究这一新兴的药物输送技术领域。有许多方法可以创建纳米耳蜗,然后可以使用它们来为各种应用施用不同的活性化合物。本文讨论了纳米耳蜗的组成和结构以及这些化合物的给药机制、制造技术、评估、用途和局限性。
摘要本评论文章概述了金纳米颗粒(AUNPS)在生物医学中的应用,重点是它们在癌症治疗,药物递送,诊断和组织再生中的使用。AuNP的独特光学特性允许光热治疗(PTT),而其柔性表面化学能够通过靶向配体和治疗剂进行功能化。广泛的研究证明了使用近红外(NIR)激光照射在各种肿瘤模型中AuNP介导的光热消融的有效性。通过具有转铁蛋白,叶酸和透明质酸等配体的AUNP平台的工程来实现主动肿瘤靶向。将AUNP与化学疗法和免疫疗法结合在一起已显示出协同的治疗益处。此外,AuNP已被广泛探索为药物和基因的携带者。通过采用刺激反应性聚合物,脂质和介孔二氧化硅,研究人员可以精确控制货物在细胞内的释放。在诊断领域,AUNP的等离子特性已被利用用于光声成像,并且在哨兵淋巴结的映射中已证明了成功的临床翻译。此外,AUNP构建体克服了与血脑屏障(BBB)相关的挑战,从而有效地向中枢神经系统(CNS)递送了挑战。在再生医学中,功能化的AUNP与生长因子结合使用时,在刺激造成骨,肌发生,血管生成和组织再生等过程中表现出显着的潜力。此外,发现它们通过免疫调节和促进血运重建来加速伤口愈合。此外,使用基于AUNP的水凝胶和支架为组织工程应用提供了至关重要的结构支持。AUNP平台的多功能性为肿瘤学,药物输送,诊断和再生疗法领域的挑战提供了有希望的解决方案。正在进行的优化工作具有将这些策略从实验室转化为临床应用的巨大希望。
1。根据FDA的介绍,API是已批准用于官方药典的物质,旨在用于诊断,治疗,缓解或预防疾病。药物输送是一种以一种精确提高身体特定部位的药物浓度的方式,可以给患者使用药物。[1]任何输送系统的最终目标都是在病态组织中使用安全相互作用扩展,遏制和靶向药物。每种剂型均由药物的活性药物成分(API)和赋形剂/添加剂(即非药物)组成。用于治愈疾病的实际化学元素称为API。[2] 2。通常需要使用剂型的药物输送系统(DDS),因为在临床环境中使用活跃的药物成分(API)是极为罕见的。对于特别有功能的药物(例如低毫克和G剂量),API处理和精确剂量可能具有挑战性或不可能。[3]药物可以在给药部位降解(例如,胃中的pH值低),当药物浓度较高时,它们可能会引起局部刺激或受伤,从而使药物给药