k空间中的电势和bloch带。b |时间周期性潜力和能量带有浮子带。c,d | 2D狄拉克系统中的浮雕工程,导致浮点边带(红色)和谐振缝隙在交叉点开口。e,f | Ti Bi 2 Se 3中Trarpes对浮标状态的实验观察结果。在不同延迟时间(e)的表面狄拉克锥的trarpes光谱。trarpes频谱在零延迟时间(F)。g |光引起的异常大厅电流信号。h |光诱导的霍尔电导与能量的关系。i |使用Floquet理论在光激发下的有效带结构。面板E是参考文献中的trarpes数据。69,并从参考文献中转载。291,Springer Nature Limited。面板F从参考文献转载。69,Springer Nature Limited。面板G-i从参考文献中转载。71,Springer Nature Limited。71,Springer Nature Limited。
在光学量子信息处理中,基于半导体材料中的两级系统的单光子源可实现单个光子的需求生成。为了启动伴随发射过程,有必要有效地填充激发态。然而,由于在固态环境中存在电荷噪声和声子诱导的反应性,因此以高效率和高光子不明智的效率和高光子不明智的态度来调解需求的需求仍然是一个挑战。在这里,我们重建了WSE 2量子发射器在发射过程中经历的声子光谱密度,我们将此信息用于理论上分析谐振,声音辅助和量子发射器种群(SUPER)摇摆激励方案的性能。在谐振激发下,我们获得了强烈的声子耦合的激发剂限制为0.80的激动子制剂,而超级方案(或0.89,根据所考虑的发射极类型)提高到0.96(或0.89)。在近谐振的语音辅助激发下,我们的理论预测了近乎统一的激发保真度,最高为0.976(0.997)。此外,我们证明,假设抑制了声子边带,诸如电荷和自旋波动之类的残留脱位机制是破坏光子无法区分性的主导地位的反折叠机制。
高保真度的单量子比特和多量子比特操作构成了量子信息处理的基础。这种保真度基于以极其相干和精确的方式耦合单量子比特或双量子比特的能力。相干量子演化的必要条件是驱动这些跃迁的高度稳定的本振。在这里,我们研究了快速噪声(即频率远高于本振线宽的噪声)对离子阱系统中单量子比特和双量子比特门保真度的影响。我们分析并测量了快速噪声对单量子比特操作的影响,包括共振π旋转和非共振边带跃迁。我们进一步用数字方式分析了快速相位噪声对 Mølmer-Sørensen 双量子比特门的影响。我们找到了一种统一而简单的方法,通过量子比特响应频率下的噪声功率谱密度给出的单个参数来估计所有这些操作的性能。虽然我们的分析侧重于相位噪声和离子阱系统,但它也适用于其他快速噪声源以及其他量子比特系统,在这些系统中,自旋类量子比特通过共同的玻色子场耦合。我们的分析可以帮助指导量子硬件平台和门的设计,提高它们对容错量子计算的保真度。
AFIS 模拟飞行仪表系统(新西兰航空公司用来区分‘传统’和‘玻璃’驾驶舱的通用术语) AFDS 自动驾驶仪飞行指引系统 AGL 地平面以上 A/P 自动驾驶仪 APP 自动飞行系统进近模式 AQD 航空质量数据库 ARINC 航空无线电公司 ASA 自动着陆状态信号器 A/T 自动油门 ATC 空中交通管制 CAANZ 新西兰民航局 Capt 机长 类别 CRM 机组资源管理 CDU 控制显示单元 CFIT 可控飞行撞地 CSB 载波加边带 CVR 驾驶舱语音记录器 DDM 调制深度差 DME 测距设备 EADI 电子姿态指示器 EFI 电子飞行仪表 EFIS 电子飞行仪表系统 EGPWS 增强型近地警告系统 EHSI 电子水平状况指示器 ETA 预计到达时间 ETD 预计离场时间 FA Faleolo VOR FAF 最后进近定位点 FAP 最后进近点FCC 飞行控制计算机 FCTM 飞行机组训练手册 FD 飞行指引器 FDR 飞行数据记录器 FMC 飞行管理计算机 FMCS 飞行管理计算机系统 F/O 副驾驶 FOQA 飞行运行质量保证 GPWS 近地警告系统 GP 下滑道(通常参考地面发射器时使用) G/S 下滑道(通常参考飞机仪表、接收器或机组程序时使用)
在正常分散纤维激光器中没有外部压缩的无chiRP无孔孤子的抽象直接生成是超快光学的长期挑战。我们展示了在正常分散杂种杂种纤维纤维激光器中,近乎光谱的边带,含有几米的极化维护纤维。典型模式锁定脉冲的带宽和持续时间分别为0.74 nm和1.95 ps,给出0.41的时间带宽产品,并确认了近乎纤维化的属性。数值结果和理论分析完全再现并解释了实验观察结果,并表明福音双发性,正常分散和非线性效应遵循相匹配的原则,从而实现了近乎无chirp的无孤子的形成。特别是,相匹配效应汇总了通过自相度调制扩大的光谱,而饱和吸收效果则缩小了正常分散体拉伸的脉冲。这种脉冲被称为双重管理的孤子,因为它的两个正交偏振组分以不对称的“ x”方式在极化维护的纤维内传播,部分补偿了由色散引起的群体延迟差异,并在自动一致的进化中导致。在模式锁定的纤维激光器中,双折射管理的孤子管理的特性和形成机制与其他类型的脉冲有所不同,该激光器将在激光物理学,孤子数学及其相关应用中开设新的研究分支。
2快速入门7 2.1独立网状安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.1.1解决依赖性和安装问题。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.2尝试使用基于网状的程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.2.1远程外壳。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.2.2 Nomad Network。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 8 2.2.3边带。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9 2.2.4 Meshchat。 。 。 。8 2.2.2 Nomad Network。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.2.3边带。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.2.4 Meshchat。 。 。 。9 2.2.4 Meshchat。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.3使用随附的实用程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.4用网络创建网络。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.5通过互联网连接网状实例。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.6连接到公共测试网。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.7添加无线电接口。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.8创建和使用自定义接口。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.9开发带有网状的程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.10参与网状发育。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.11平台特定的安装说明。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 2.11.1 Android。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 2.11.2 ARM64。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 2.11.3 Debian Bookworm。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.11.4 MacOS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.11.5 OpenWrt。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.11.6 Raspberry Pi。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 2.11.7 RISC-V。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 2.11.8 Ubuntu Lunar。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。16 2.11.6 Raspberry Pi。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.11.7 RISC-V。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 2.11.8 Ubuntu Lunar。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。16 2.11.7 RISC-V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.11.8 Ubuntu Lunar。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 2.11.9窗口。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 2.12纯净的网状网。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 div>
技术图书馆 Bay 1 A1 3290 601 型便携式现场探测器手册,用于 VAR 类型 TS19(RA Ratcliffe)(3)---- DCA 3291 VHF 全向测距 (VOR) 操作说明(4 份)1976 DOT 3292 可视听觉无线电测距 (VAR) 和标记信标操作说明(5 份)1953 DCA 3293 CA-1374 型信号发生器音频 VOR-ILS 说明书 1948 Wedd Labs USA 3294 TUJ 型超高频无线电发射器说明书(2 份)1941 A/c Acc。USA 3295 CA-219 型无线电测距键控器说明书(3 份)1943H.O.Boehme USA 3296 航空无线电设备 VHF 无线电范围 (VAR)(3 份)1947 DCA 3297 航空无线电设备 33Mc 无线电范围信标设备类型 J3707(4 份)1947 DCA 3298 AWA 9 米 Tadio 信标发射器类型 J3707 说明书 1938 AWA 3299 发射器 BC-797 远程控制单元 RM13A RX 类型 201A 的组件计划 ---- DCA 3300 短距离无线电导航 - 美国空中协调委员会 1959 USACC 3301 实验室报告 No.536 双音发生器修改 1962 DCA 3302 VHF 信号发生器类型 CA-211-A 说明书 1948 Boonton USA 3303 VAR 范围信息 1966 DCA 3304 自动着陆系统 - 文章集 1974 DCA 3305 AWA 航空部- 飞行评估程序 1969 AWA 3306 LORAN-C 论文(3 个文件夹)1970 年代 DCA 3307 DOT 设计和供应 TDM 转换设备的提案 1975 AWA 3308 操作说明 - 仪表着陆系统 (ILS) 1972 DCA 3309 VAR 图纸(3 卷) ---- DCA 3310 视听范围 (VAR) 组件计划 ---- DCA 3311 CA-794 型变频器说明书,Alt。控制单元 CA-797 (2) 1945 续电气美国 3312 场探测器初步说明书 序列号 (1-16) UHF 1942 Wilcox-Gay 美国 3313 遥控器初步说明书 序列号 (1-8) 1942 Wilcox-Gay 美国 3314 UHF 无线电测距设备测试数据 3461-Ch1-42.05 1942 Wilcox-Gay 美国 3315 无线电测距设备说明书 1942 Wilcox-Gay 美国 3316 UHF 无线电测距序列号 (1-8) 初步通用说明书 1942 Wilcox-Gay 美国 3317 语音放大器序列号 (1-8) 初步说明书 1942 Wilcox-Gay 美国 3318 边带调制器序列号初步说明书。编号(1-16) 1942 Wilcox-Gay USA 3319 电压调节器系列初步说明书编号(1-32) 1942 Wilcox-Gay USA 3320 继电器电源系列初步说明书编号(1-16) 1942 Wilcox-Gay USA 3321 遥控设备系列初步说明书编号编号编号编号编号编号(1-8) 1942 Wilcox-Gay USA 3322 组合高通带抑制滤波器初步说明书 1942 Wilcox-Gay USA 3323 边带发生器系列初步说明书(1-32) 1942 Wilcox-Gay USA 3324 混合单元系列初步说明书(1-16) 1942 Wilcox-Gay USA 3325 载波调制器驱动器系列初步说明书(1-16) 1942 Wilcox-Gay USA 3326 天线阵列初步说明书 1942 Wilcox-Gay USA 3327 载波调制器系列初步说明书(1-16) 1942 Wilcox-Gay USA 3328 监控放大器系列初步说明书(1-8) 1942 Wilcox-Gay USA 3329 边带调制器单元驱动器系列初步说明书编号(1-16) 1942 Wilcox-Gay USA 3330 32A 无线电接收器和 507A 无线电接收器使用说明书 ----Western Elec USA 3331 VAR 电动机交流发电机组 - 说明和维护零件清单 1956 DCA 3332 无线电靶场设备 112Mc VAR 系统的安装和操作手册 1940 年代 DCA 3333 NDB 和 ADF 操作说明 1976 DCA 3334 学生、私人和商业飞行员的航空法规考试 1968 DCA 3335 通用航空飞行员的航空法规考试 1976 DCA 3336 VAR 监视器图纸 1964 DCA 3337 VAR Range Mark III Airaco 图纸 1963 DCA 3338 VAR 监视器机架& VAR 文档 1963 DCA 3339 VAR 课程形成设备图纸 1954 DCA 3340 VHF Omnirange 系列 483 安装和维护手册 1960 年代 Wilcox USA 3341 VOR 组件计划 ---- DCA 3342 VOR 系列 483 零件目录 1960 年代 Wilcox USA 3343 NARCO VHF Omni 接收器性能测试 1951 CAA USA 3344 VOR Omni Range AME 类型 RAO 1615/2 DCA 类型 T52 的通用手册 1964 AME France 3345 METRIX 万用表型号 477 的工作说明 1960 CGM France 3346 调制和控制单元类型 1J3427 的组件计划 ---- DCA
将机械振荡器用激光冷却到其运动基态是量子计量、模拟和计算领域的一个持续研究方向[1-4]。特别是,将单个原子定位到远低于光波长(“Lamb-Dicke”机制)是实现原子系统高保真量子控制的先决条件[1,5]。在大的捕获离子晶体中,量子纠缠门利用离子的集体运动[6,7]。这种运动必须在基态附近制备,冷却过程与耦合到环境的加热相竞争[8,9]。因此,开发新方法来实现所有运动模式的高带宽和快速冷却至关重要,这些运动模式用作量子信息处理的量子总线。解析边带冷却(RSC)是冷却机械振荡器的通用工具,对于捕获离子,它是冷却到基态的标准方法[1,10-12]。然而,RSC 时间通常随着振荡器的总质量或链中捕获离子的数量线性增长。通过实施具有单离子寻址的并行 RSC 策略,可以改善大型链的这种缩放比例 [13] 。捕获离子和原子的电磁诱导透明 (EIT) 冷却是另一种众所周知的基态冷却方法 [14 – 20] 。它利用三能级 Λ 系统中的量子干涉 [21] 来创建针对原子运动量身定制的可调窄光谱特征,以实现高效冷却。应用于捕获离子,EIT 冷却允许在很大一部分运动光谱上同时进行基态冷却,而无需单离子寻址 [22 – 24] 。EIT 冷却在简单的三能级系统之外的扩展已经激发了一些理论 [25 – 27] 和实验 [28 – 30] 研究。这种扩展对于量子
接收器温度和改进的孔径效率将使四个波段的谱线灵敏度提高 3 倍(观测速度提高 9 倍)。当查看线测量和连续灵敏度时,增益数字变得更加引人注目:配备边带分离混频器的 NOEMA 阵列总带宽为 32 GHz(双极化中为 2SB),将使连续灵敏度提高 5 倍(或观测速度提高 25 倍)。这显然是探测灵敏度的重大突破,例如,高红移的弱星系群远低于最近在毫米和亚毫米波长下进行的河外星系调查的源混淆极限。对于线测量和红移 CO 发射搜索将获得类似的增益。由于对扩展源的灵敏度与阵列合成光束的大小紧密相关,因此将 PdBI 的角分辨率加倍需要 3-4 倍的灵敏度才能最佳地满足科学要求。使用 6 个元件,只需在观察时间上进行昂贵的投资即可提供所需的灵敏度。基线长达 1600 米的 12 天线阵列提供了出色的测绘能力,合成光束面积缩小了 3 到 4 倍,动态范围大大改善(倍数 > 20-100)。NOEMA 仅具有两种阵列配置,还将提供更高的校准精度、更高的观察效率以及在扩展配置下每年超过 4 个月的连续天文操作。NOEMA 校正大气相位变化的能力对于在四个毫米波段实现高效、灵活的操作(空间分辨率低至 0.1”)具有重要意义。图2:NOEMA 的空间分辨率与当前和未来的(亚)毫米波阵列相比。NOEMA 旨在覆盖 70 – 370 GHz 范围。
2006-8 国防科学与工程研究生奖学金出版物、专利和演示文稿参考期刊和预印本:39. 测量诱导的囚禁离子加热 AJ Rasmusson、I. Jung、F. Schroer、A. Kyprianidis 和 P. Richerme arXiv: 2404.09327 (2024) 38. NISQ 量子计算:以安全为中心的教程和调查 F. Chen、L. Jiang、H. Mueller、P. Richerme、C. Chu、Z. Fu 和 M. Yang IEEE 电路与系统 24 , 14 (2024) 37. 具有全局驱动器的囚禁离子量子模拟器中的交互图工程 A. Kyprianidis、AJ Rasmusson 和 P. Richerme 新物理学杂志 26 , 023033 (2024) 36. 用于学习可转移视觉表征的混合量子-经典神经网络 R. Wang、P. Richerme 和 F. Chen 量子科学与技术 8 ,045021 (2023) 35. 氢键动力学和振动光谱的量子计算 P. Richerme、MC Revelle、CG Yale、D. Lobser、AD Burch、SM Clark、D. Saha、MA Lopez-Ruiz、A. Dwivedi、JM Smith、SA Norrell、A. Sabry 和 SS Iyengar J. Phys. Chem. Lett. 14 ,7256 (2023) 34. 将量子化学动力学问题映射到自旋晶格模拟器上 D. Saha、SS Iyengar、P. Richerme、JM Smith 和 A. Sabry J. Chem. Theory Comput. 17 , 6713 (2021)。33. 优化的脉冲边带冷却和增强的捕获离子温度测定 AJ Rasmusson、M. D'Onofrio、Y. Xie、J. Cui 和 P. Richerme Phys. Rev. A 104 , 043108 (2021)。32. 用于径向二维离子晶体的开放式端盖叶片陷阱 Y. Xie、J. Cui、M. D'Onofrio、AJ Rasmusson、S. Howell 和 P. Richerme 量子科学与技术 6 , 044009 (2021)。 31. 囚禁离子量子比特对低剂量辐射源的敏感性 J. Cui, AJ Rasmusson, M. D'Onofrio, Y. Xie, E. Wolanski 和 P. Richerme J. Phys. B: At. Mol. Opt. Phys. 54 , 13LT01 (2021)。30. Floquet 计量泵作为受对称性或拓扑保护的光谱退化传感器 A. Kumar, G. Ortiz, P. Richerme 和 B. Seradjeh Phys. Rev. Lett. 126 , 206602 (2021)