1. 制冷与空调 - C.P. Aroa - Tata McGraw Hill 2. 制冷与空调 - W.F.Stoecker、J.W.Jones McGraw Hill 3. 制冷与空调 - Roy J. Dossat. - Pearson Education 4. 制冷与空调课程 - S.Domkundwar、S.C. Arora。 5. 制冷与空调课程 - R.S. Khurmi 和 J.K.Gupta 6. 制冷与空调课程 - Manohan Prasad
席林博士在长达 50 年的职业生涯中致力于学术医学。他出生并成长于密苏里州堪萨斯城郊外,15 岁时进入达特茅斯学院。1937 年从达特茅斯毕业后,他进入哈佛医学院学习,成为 1941 届的学生,该届学生是二战前最后一届毕业生。在纽约罗斯福医院开始实习和住院医师培训的六个月前,他签约成为 Effie M. Morrissey 号帆船的船医,参加由美国标准局赞助的北极科学考察。在经历了格陵兰海岸和哈德逊海峡的一系列危险冒险之后,他返回纽约,开始接受普通外科培训。1945 年,他加入罗彻斯特大学外科队伍,在那里开始了他毕生的伤口愈合工作。他在罗切斯特的职业生涯被中断了几个月,前往中央太平洋(埃尼威托克)参与了原子弹试验和曼哈顿计划中闪光烧伤的研究。随后,他以志愿者的身份加入了空军,并在圣安东尼奥新成立的航空医学院建立了外科部门。
⚫ 教育 坎普尔拉玛大学博士学位(在读) 坎普尔拉玛大学技术硕士 AKTU 技术学士学位 ⚫ 成就 技术硕士金牌得主 ⚫ 经验 目前在 Integral 大学工作至今 SRIMT 两年教学经验 SIMT 一年教学经验 ⚫ FDP/研讨会/研讨会 FDP:机器学习基础 FDP:教学和研究论文写作中的人工智能 FDP:NEP 2020:EPRI 研讨会:人工智能工具 研讨会:人工智能与当前研究 研讨会-国家知识产权意识使命 研究兴趣: ⚫ 人工智能与机器学习 研究成果摘要: ⚫ 研究论文:智能系统用于电子银行的视觉加密技术
研究目标 我团队的研究目标是控制有机半导体聚合物薄膜的宏观和纳米级形貌,以开发功能性、经济高效、便携且环境友好的有机电子设备。该小组旨在优化有机电化学晶体管(OECT),以提供用于神经病理学检测(联合国目标 3)和用于确定水是否可饮用的细菌检测(联合国目标 6)的新一代生物传感器。为了实现这些目标,该小组精心设计了新的高度结构化的聚合物薄膜,并了解驱动其化学和电化学掺杂的基本机制。我们将各种显微镜技术与先进的原位光谱和电表征技术相结合,以合理指导分子和器件工程。为了开展这项高度跨学科的研究,该小组正在与国际知名的(i)化学家合作,提供用于回答我们研究问题的最先进的性能聚合物,(ii)物理化学家,使用顶尖的表征仪器,以精确度澄清具体问题,以及(iii)生物学家,通过开发功能性生物传感器来评估我们的研究结果并提高技术就绪水平。
本报告由达特茅斯学院本科生在纳尔逊·洛克菲勒中心教授的指导下撰写。政策研究中心 (PRS) 的学生进行非党派政策分析,并以非倡导的方式展示他们的研究成果。PRS 由达特茅斯 1964 届毕业生全额资助,作为庆祝中心成立 50 周年的班级礼物。这笔捐赠确保政策研究中心将继续为新罕布什尔州和佛蒙特州的政策制定者提供高质量、非党派的政策研究。PRS 之前的主要资金来自美国教育部、高等教育改进基金 (FIPSE) 和福特基金会,以及 Surdna 基金会、Lintilhac 基金会和福特汽车公司基金的初始种子基金。自 2005 年成立以来,PRS 学生已投入超过 70,000 小时,为新罕布什尔州和佛蒙特州的政策制定者编写了 200 多份政策简报。PRS 政策简报 2223-06 2023 年 5 月 10 日
TSUGE Tetsuya*、SATO Yukie*2、NAKAGAWA Hitoshi* *日本开放大学,日本千叶县美滨区若叶 2-11 号,邮编 261-8586 *2 金泽星陵大学,日本石川县金泽市御所町牛石 10-1 号,邮编 920-8620
特殊讲座Tokuron 2024.4-2025.3标题:对老化说:氧化还原药理学和精密医学教学人员:Chang Chen;日期和时间:2月27日,星期四,REIWA 5:45-17:15时间和日期:15:45-17:15,2月27日(THU.),2025年:医学研究大楼3楼,医学研究大楼3(3F)语言:英语摘要:人口老化已成为世界各地的重要问题抗氧化剂已被尝试用作抗衰老干预措施但是,临床结果仍然令人失望我们最近提出了精确氧化还原的概念,“ 5R”原理是抗氧化剂药理学的关键,即正确的物种,正确的位置,正确的时间,正确的水平和正确的目标作为氧化还原医学的指南我们的最新结果进一步验证了上述概念我们发现Ca 2+ /钙调蛋白依赖性蛋白激酶IIαs-硝化作用(SNO-CAMKIIα)在学习和记忆任务过程中会增加,而在自然衰老过程中则显着降低在主要的CAMKIIαS-硝基化位点(C280/289V)处于突变的小鼠暴露的认知障碍并减弱了长期增强(LTP)缺乏SNO-CAMKIIα会增加突触I(Syni)磷酸化,从而导致过度突触前释放概率,从而导致学习和记忆反应减少,而不仅在C280/289V小鼠中发生,而且在阿尔茨海默氏病(AD)小鼠和自然衰老的小鼠中也会发生根据“ 5R”原理,我们设计了一个胶分子,该胶分子精确地增加了SNO-CAMKIIα并成功挽救了小鼠的学习和记忆障碍。我们的发现表明,SNO-CAMKIIα的下调是一种新的机制,介导了与衰老有关的学习和记忆下降,并为氧化还原药理学和精密医学提供了新的灯光。有关发言人的信息:Chang Chen教授目前是中国科学院生物物理学研究所(CAS),CAS教授和CAS大学教授和Biomacromolecules国家实验室副主任(2012-20223)的首席研究员。她的主要研究兴趣是一氧化氮和s-硝酸(YL)ation和其他氧信号转导中的其他硫醇修饰。老化和相关疾病中的氧化还原调节;中药的机制。* *生体反応病理学