摘要 能量耗竭是那些以固定能量预算进行长距离迁徙的动物所关注的重要问题。迁徙的成年弗雷泽河红鲑(Oncorhynchus nerka)停止在海洋中觅食,完全依赖内源能量储存来成功完成随后的淡水迁徙和产卵。大多数关于成年鲑鱼能量利用的研究都集中在迁徙的河流部分,但沿海迁徙可能会耗费大量能量,特别是在气温温暖、潮汐湍急的河口地区。我们沿不列颠哥伦比亚省海岸和弗雷泽河河口用声学三轴加速度计发射器标记和跟踪 38 条成年红鲑,行程超过 200 公里,比较了鲑鱼在沿海、河口和河流地区迁徙的相对能量成本。加速度计输出被转换为特定于温度的氧气消耗率。河流的耗氧率是沿海海洋区域(包括河口)的两倍,这主要是由于游动速度更快。耗氧率还受昼夜周期的影响,中午的能量消耗更高;但是,我们没有发现潮汐周期影响能量消耗的证据。尽管弗雷泽河的耗氧率更高,但运输成本(kJ −1 kg −1 km)在西摩海峡(一个潮汐冲刷较强的狭窄沿海地区)最高,这与之前的研究一致,表明这是一个可能对鲑鱼洄游具有挑战性的区域。总体而言,我们已经证明沿海海洋能量消耗是太平洋鲑鱼产卵洄游能量预算的重要组成部分。
《波恩公约》《保护野生动物迁徙物种公约》(波恩公约或CMS)于1979年在德国波恩通过,并于1985年生效。缔约方共同努力保护迁徙物种及其栖息地,包括对濒危迁徙物种提供严格保护(列入公约附录一),缔结需要或将受益于国际合作的迁徙物种保护和管理多边协定(列入附录二),以及开展合作研究活动。英国于 1985 年批准了该公约。《野生动物和乡村法》(1981 年修订版)、《野生动物(北爱尔兰)法令》(1985 年)和《自然保护和休闲用地(北爱尔兰)法令》(1985 年)规定了对附录 I 物种进行严格保护的法律要求。此外,英格兰和威尔士还颁布了《乡村和通行权法》(2000 年)(CRoW),通过增加处罚和执法权力来加强对某些物种的保护;并加强了对场地的保护,防止第三方造成的损害。
《波恩公约》《保护野生动物迁徙物种公约》(波恩公约或CMS)于1979年在德国波恩通过,并于1985年生效。缔约方共同努力保护迁徙物种及其栖息地,包括对濒危迁徙物种提供严格保护(列入公约附录一),缔结需要或将受益于国际合作的迁徙物种保护和管理多边协定(列入附录二),以及开展合作研究活动。英国于 1985 年批准了该公约。《野生动物和乡村法》(1981 年修订版)、《野生动物(北爱尔兰)法令》(1985 年)和《自然保护和休闲用地(北爱尔兰)法令》(1985 年)规定了对附录 I 物种进行严格保护的法律要求。此外,英格兰和威尔士还颁布了《乡村和通行权法》(2000 年)(CRoW),通过增加处罚和执法权力来加强对某些物种的保护;并加强了对场地的保护,防止第三方造成的损害。
在物种一级,红润的旋转石是根据EPBC法案所列的迁徙物种。该物种列在日本澳大利亚候鸟协议(JAMBA),中国 - 澳大利亚候鸟协议(CAMBA)和大韩民国 - 澳大利亚迁徙鸟类协议(Rokamba)中。红润的旋转石也在《迁徙物种公约》(CMS)的附录II上列为Scolopacidae家族成员。这些具有法律约束力的国际协议鼓励相关的缔约方保护红润的托克石,其栖息地,并消除移民的障碍。在澳大利亚时,在许多具有国际意义的拉姆萨尔湿地中,可以找到红润的旋风。Ramsar公约上列出的湿地被列为《 EPBC法》的国家环境意义问题。
德国军事地球物理局。鸟类迁徙观察、预警和预报系统:自动鸟类迁徙信息系统的新发展 气象学硕士 Wilhelm Ruhe,理学硕士 德国军事地球物理局生物学 - 科室 (GU 4) D - 56841 Traben - Trarbach,德国 电话:06541/18734 传真:06541/18767 电子邮件:WilhelmRuhe@awg.dwd.d400.de 摘要 德国军事地球物理局 (GMGO) 在所有鸟击预防领域拥有 30 多年的经验。军事训练和飞行作业通常在低空进行,那里也有很多鸟类,尤其是在海岸附近和迁徙期间。大约三分之一的 GAF 鸟击发生在低空飞行作业期间。军事低空飞行中防止鸟击的最有效工具是经过充分验证的系统,该系统包括 • 持续的实际鸟类迁徙观察(视觉和雷达), • 即时报告, • 集中风险评估, • 在线警告(BIRDTAM), • 立即向空军人员和飞行员分发 BIRDTAM, • 严格的军事飞行规定和 • 定期的鸟击风险预报以供规划之用。本文概述了德国及其邻近地区自动鸟类迁徙信息系统(AVIS(拉丁语:Bird):“Automatisiertes Vogelzug Informations -System”)的近期和近期发展。描述了该系统的重要模块。概述了项目的实际情况。鸟类迁徙观察实际的鸟类迁徙观察系统基于以下网络和技术:(i)综合气象观测网络,由大约 150 个站组成。观察员经过培训并被指派目视监测鸟类迁徙。只有较大的鸟类和鸟群规模才需要报告。 (ii) 6 个防空雷达站与防空控制和报告中心 (CRC) 一起分布在德国西部。目前的作战观察系统监控 60 海里圆形范围内的所有移动目标。个人电脑和摄像机自动记录每小时的观察结果,作为 PPI 显示器的 10 分钟延时录像(图 1)。视频图像显示鸟群的二维运动。二维杂波图像会自动处理和存储。如果超过某些参数值,系统会向雷达工作人员发出警报,并指派雷达工作人员进行解释和报告(如有必要)。此外,每台 PC 都由 GMGO(生物部门或地球物理预报中心)通过调制解调器完全远程控制。可以随时启动连接并查看实际、最近或存档的观察文件。 (三)德国东北部的一个由 5 个雷达站和远程传感器组成的系统正在使用鸟类雷达数据接口的原型,该接口连续收集预先选定的 3-D 雷达图数据(仅限初级雷达图,我们提取了与二次雷达图不相关的数据(这些图与二次雷达图不相关),并将其存储到 20 分钟的数据文件中。
背景:追踪海洋鸟类和蝙蝠的活动仍然是了解太平洋 OCS 海上能源开发对野生动物的潜在影响的关键挑战。众所周知,蝙蝠和鸟类在迁徙期间会飞到海上,历史上经常有蝙蝠飞到离岸 20 多英里的记录。包括红瓣蹼鹬、红颈瓣蹼鹬和红腹滨鹬在内的滨鸟也在春季和秋季迁徙到海上,但缺乏有关迁徙时间和地点的信息。海洋鸟类也会随季节重新分布,人们对繁殖后的扩散和重要的种群特定越冬地点知之甚少。更多有关运动生态学的信息将有利于全面评估海上能源项目的影响。
在加拿大大西洋鱼类中,大西洋鲑拥有最复杂的生命史和迁徙模式。产卵后的成年鲑鱼 (kelt) 和幼年鲑鱼 (post-smolt) 从其原生淡水河迁徙到大西洋觅食,有时甚至远至拉布拉多海。该项目使用声学和卫星标签以及一系列标签跟踪接收器和卫星遥测技术,以更好地了解鲑鱼在海上的迁徙行为(位置和栖息地使用情况)。该项目的目标是确定不同生命阶段的大西洋鲑鱼(幼年后期、产卵后的kelt 和多海冬季成年鲑鱼)在加拿大东部近海区域的时间、地点和持续时间。结果将支持加拿大近海石油和天然气活动领域的监管决策。
背景 蛱蝶(Vanessa cardui)分布极为广泛,除南美洲和大洋洲大部分地区外,所有大洲都有分布(Shields,1992)。该物种每年进行长距离多代迁徙(Pollard 等人,1998;Stefanescu 等人,2013;Talavera 等人,2018;Williams,1970)。它不越冬,因此处于持续的迁徙中。在古北区,已知迁徙者在北非和欧洲之间季节性循环(Pollard 等人,1998;Stefanescu,2011;Stefanescu 等人,2013)。最近的研究还表明,秋季欧洲种群穿越撒哈拉沙漠到达热带非洲( Stefanescu 等人,2016 年;Talavera & Vila,2016 年)。这次旅程跨越 4000 多公里,是蝴蝶已知的最长单足迁徙飞行。蝴蝶在春天迁回欧洲,因此在古北区-非洲范围内,每年可飞行 14000 公里,历时 8-10 代( Menchetti 等人,2019 年;Talavera 等人,2018 年)。红蛱蝶遍布不列颠群岛,但其数量在不同年份差异很大。幼虫
迁徙鱼与人类社会有着密切的联系。在Tocantins- Araguaia盆地中,一个以高生物多样性,原产性和环境退化为标志的地区,几乎没有关于这些鱼类的信息。在这种情况下,本研究调查了potamodomous鱼类的分类学和功能多样性,目的是编译第一个物种清单,并检查物种丰富度,组成和功能多样性的模式。根据Tocantins-Araguaia和Amazon盆地的鱼类多样性的最新文献分配了每个物种的迁徙状况。这项研究巩固了77种Potamodomous鱼类(三个订单,12个家庭和41个属)的清单,其中包括八个流行性,三个受到威胁和两个非本地物种。pimelodidae总结了大多数物种,其次是Serrasalmidae和Curimatidae。大多数物种被归类为培养基(42)和长距离(32)移民,很少进行大陆迁移(3)。大多数物种广泛分布在盆地中,导致物种丰富度,组成和功能多样性的空间变化很小。但是,特征组成在物种,家庭和迁徙量表之间各不相同。这是该盆地中迁徙鱼类的第一个广泛评估,有可能生成基本信息以支持渔业管理,环境规划和保护计划。
背景 许多鸟类种群都会迁徙,最常见的模式是在春天向北飞行,在温带或北极的夏季进行繁殖,然后在秋天返回南方较温暖地区的越冬地。北半球夏季白天时间较长,为繁殖的鸟类喂养幼鸟提供了更多机会。许多在北方繁殖的鸭、鹅和天鹅也是候鸟,但它们只需从北方的繁殖地向南迁徙足够远以逃离冰冻的水域即可。 *课程信息可以在课堂上或活动区域外提供 - 学生应该有一份包含信息的讲义,也可以在活动前提供。 什么是迁徙? 鸟类迁徙被描述为鸟类种群从一个地理位置到另一个地理位置再返回的有规律的、反复的、季节性的迁移。鸟类需要特定的环境资源来繁殖,而为幼鸟提供充足的食物是决定物种在何时何地繁殖的主要因素。最常见的模式是春天向北飞行繁殖,秋天返回南方较温暖地区的越冬地。鸟类的身体结构和生理机能与其他动物不同,它们能够在一年中的不同时间寻找最适合自己需要的环境。它们的飞行能力、肺和气囊以及新陈代谢能力都有助于实现这一能力。