摘要本文介绍了电池储能系统(BESS)的中型电压分配网络(MV-DN)的黑色启动。BES由一个两级电压源逆变器接口MV-DN组成,该逆变器限制了过电流的能力。另一方面,MV-DN通常包括几个升级和降低的变压器,它们正在绘制交感神经液在通电阶段中。因此,在MV-DN Island操作过程中,执行黑色的主要困难在于逆变器必须同时控制网络电压及其输出电流。本文提供了两种控制方法,以控制MV-DN黑色启动过程中的inrush电流。所提出的控制方案由固定参考框架中的下垂,电压和电流循环组成。下垂环用于生成电压参考。中间电压和内部电流循环均设计用于输出电压调节,电流参考生成以及电流跟踪。新的参考修改器包含在下垂和电压循环中,以限制Inrush电流。通过1 mva bess在芬兰对芬兰的Ingå-DN进行了实验测试,以实验测试了其性能,并根据冲洗电流值和电压质量比较其性能。获得的结果证明,两种方法都能够在稳态中使用固定电压为负载以及考虑到逆流过电流极限的固定电压以及限制变压器的冲洗电流。
良好的BMS应满足用户的最低要求,例如坚不可摧,很少产生热量并减少材料清单(BOM)。BMS是一个关键的设备,当电池中出现异常时,可以切断电源线(例如过电流,过热,充电等),损坏或破裂一定很难。其次,许多电流的安培将流过电路,从而导致电池中电流路线的损失,这将产生热量并损害锂离子电池操作的安全性。最后,在保持产品安全性以及降低硬件设计尺寸的同时,设计的材料降低至关重要。
使用官方标准电路设计的功率放大器板,芯片选择是使用美国进口的原始龙三脚架D类放大器芯片。好的产品筹码和可分享的大量音乐爱好者,这是我们一致的理念!在输出10W +10 W电源的情况下,放大器具有高效率,大功率,12V电源,没有散热器的芯片,但也有过热,过电流和其他保护功能,可以说该功能非常强大。
温度传感器是从细胞端子中分离出来的,可以通过单独的电路安全地读取信号。但是,使用标准堆栈测量IC非常方便,通常用于电池监视和平衡。图6给出了具有广泛可用LTC6803的电路示例。要测量温度,在IC上激活平衡开关。这样做后,CN+1和CN之间的电压差为温度。在这种测量过程中,传感器电流从细胞正选项卡到串联电阻器到传感器,然后转移到IC的内部平衡FET,然后通过另一个串联电阻到细胞为阴性。因此,在这种情况下,使用330Ω电阻为传感器形成680Ω电阻。当禁用开关时,可以测量电池电压。请注意,在添加电容器进行过滤测量时,应格外小心,因为这可能导致传感器中的过电流状态。还要注意,不得启用相邻的平衡开关,因为这也会导致过电流。如果选择了这样的技术,则应一次在每个第二个单元格上进行两个循环进行测量(例如:1、3和5,2、4和6)。建议使用单独的IC进行电池管理和温度测量,但是,通过额外的谨慎和智能工程,可以使用单个IC进行电池电压测量,温度测量和平衡:如果添加了额外的出血电阻和MOSFET,则可以在温度测量过程中平衡细胞。
摘要 - 分配系统中安装在分配系统中的Battery储能系统(BESS)和太阳能电动汽车(PV)逆变器源通常旨在提高系统的弹性。这些来源可以通过增加和保持服务的连续性,同时在高需求期间提供剃须能力,从而补充大量电力系统。在配置用于与下垂(GFMD)特性的网格形成时,可以设计为可调节能源,以支持往返岛屿条件的无缝过渡,而无需更改模式,没有中断。通过分布公用事业部署的传统保护方案使用倒数过时的元素(51)来协调网络中的保护设备,例如保险丝,隐居器和断路器。在具有基于逆变器的来源的岛屿系统中,由于可用故障电流量有限,因此需要修改此保护方案。逆变器(BESS和PV)由于其切换设备的热量考虑,其短路能力受到限制,从而有效地使逆变器成为系统故障的当前限制源。结果是,逆变器不作为传统来源,而保护性继电器计划必须适应有限的断层电流贡献。作者评估了用BESS作为能源供应的分配变电站的岛化操作。实时数字仿真和硬件中的结果(HIL)测试产生了一种简单的确定时间过电流协调方法,并具有标准的保护性继电器元素,以保护分配馈线。为了在网格和岛屿运行期间成功运行,继电器需要在系统被网格且确定的时间过电流协调的同时区分时间过电流的协调性。根据创新的频率移动方法启用了保护性继电器元素,以避免需要保护级的通信渠道。在岛状条件下,一种负载方案为系统提供了额外的弹性和稳定性,同时改善了连接负载的服务连续性。本文讨论了基于逆变器的能源在分配系统中的使用,这些来源的故障当前贡献,岛岛操作期间的保护性继电器解决方案,在岛状条件下的负载拆料方案以及检测开源条件(在常见耦合[PCC]的上游[PCC]的上游上游)。所有讨论点都用示例说明。
良好的BMS应满足用户的最低要求,例如坚不可摧,很少产生热量并减少材料清单(BOM)。BMS是一个关键的设备,当电池中出现异常时,可以切断电源线(例如过电流,过热,充电等),损坏或破裂一定很难。其次,许多电流的安培将流过电路,从而导致电池中电流路线的损失,这将产生热量并损害锂离子电池操作的安全性。最后,在保持产品安全性以及降低硬件设计尺寸的同时,设计的材料降低至关重要。
以下工作着重于分析和开发用于监视和管理电动汽车中电池的高级系统。主要目的是通过实现由八个模块组成的电池模型来开发电池管理系统(BMS)模型。BMS在优化电池组的性能,安全性和寿命方面起着至关重要的作用。该研究的重点是提高电池电量状态(SOC)的准确性(SOC)和对电池的健康状况(SOH)的估计,热管理,以减轻与温度相关的降解并检测到关键的工作条件,例如过电压,欠电压不足和过电流。从电池技术简介开始,对BMS的各种功能进行了分析,实施和测试,以检查电池的正确功能。
超过6个月,进行自动维护过程,以保持或恢复电池良好的活力和健康生活。BM200的输入为AC100〜240V,通用全局电压范围。可调节的输出常数电流充电电流的可调节范围为2A〜30A(for -05)或1A〜6A(for -32);还可以手动调整充电极限电压和放电截止电压。它具有多种异常的安全保护措施,例如电池反向连接,错误连接,短路,过电压,电压欠压,过电流和过度电流。BM200-XX-B/D具有蓝牙功能,用户可以通过其手机或PC查看历史充电和放电数据和曲线。BM200-XX-C/D具有RS485通信接口,可以实现级联功能。多个BM200级联反应可以同时测试和维护多达255系列的多连接高压电池组。