引言Gaucher病(GD)在Ashkenazi犹太人中有800名中的1例,在一般人群中有1,000-50,000中的1个。它是由GBA基因中的突变引起的,该突变编码为葡萄糖酶酶(GCASE)。gcase参与糖磷脂分解代谢,从葡萄糖基层(GLCCCER)裂解葡萄糖以产生神经酰胺(CER)。GLCCER也可以通过酶酸神经酰胺酶转化为葡萄糖基肾上腺素(GLC-SPH)(2)。在GD中,表示不足的GCASE,导致GLCCER和GLCSPH的积累(3-5)。GD的特征是肝肾上腺肿,细胞质,贫血和骨骼疾病(1、6、7)。GD的最低严重表现,1型GD通常与神经系统症状无关,而这种疾病类型的个体寿命最长。但是,GD类型2和3是神经性的。2型GD是最严重的疾病类型,可以导致肝肾上腺全球,蛋白石,呼吸暂停,鳞茎症状,囊瘫痪和肌阵挛性癫痫,但骨骼疾病不存在(1,7)。症状发作往往在3-6个月大时发生,中位寿命为9个月(1,7)。在3型GD中,症状通常为20岁,其中一半的患者在2(7)之前出现。具有3型GD的人可能会活到成年早期(1)。症状差异很大,可能包括肝脾肿大,细胞质,贫血,骨骼疾病,眼科,眼科,脑畸形,脑畸形,小脑共济失调,肌阵挛性癫痫和痴呆症(7)。在小鼠中,GLCCER向CER的转化对于表皮成熟至关重要(9)。在小鼠中,GLCCER向CER的转化对于表皮成熟至关重要(9)。首次尝试在小鼠中建模GD的尝试导致出生后不久导致的致死性,这是由于整个皮肤屏障的迅速流失(8)。GBA-NULL等位基因阻止了这种转换,从而阻碍了表皮屏障的发展。插入物的寿命相似,由于皮肤缺陷相似(10)。其他点突变(V394L,D409H和D409V)导致寿命更长
集成的光学器件用于在鲁棒和紧凑的材料内实现天文干涉法,从而提高了仪器的稳定性和灵敏度。为了在Hα线(656.3nm)上执行差分相测量,首先是600-800NM光谱互动计,即将开发光子积分电路(PIC)。此图片执行来自望远镜学生子孔的梁的可见组合。在这项工作中,玻璃中K +:Na +离子交换制造的Teem Photonics波导以单模范围和模式场直径为特征。波导扩散的索引轮廓是在BeamProp软件上建模的。模拟了第一光束组合器的构建块,尤其是可观的定向耦合器和被动π/ 2相变,以实现潜在的ABCD干涉测量组合。
链式光学元件可实现具有更高效率和更宽的带宽的跨空间,并且在Imaging System,超分辨率光刻和宽带吸收器中备受期待。然而,周期性边界近似未考虑Aperiodic电磁串扰,这对链轴光学设备构成了挑战,以达到其实现限制。在这里,通过野外驱动的操作实现了对局部几何和传播阶段的完美控制,其中在实际边界条件下计算了场分布。与需要大量迭代的其他优化方法不同,所提出的设计方法需要少于十个迭代才能使效率接近最佳值。基于形状优化的链式结构库,可以在十秒钟内设计厘米尺度的设备,其性能提高了约15%。此外,该方法具有将链状的连续结构扩展到任意极化的能力,包括线性和椭圆极化,这很难通过传统的设计方法实现。它为开发链式光学元件提供了一种方法,并用作构建高性能光学设备的有效工具。
鉴于在长岛,社区正在见证一种以前不为人熟知的绿色技术——电池储能系统(“ BESS ”)的引入;鉴于 BESS 设施通常由安装在独立、互连的存储单元中的多排充电电池组成。BESS 设施通常通过在低使用率期间从当地电网获取剩余能量并将其存储起来以便在高峰需求时分配回电网来运行;鉴于巴比伦镇消防局、环境控制部和当地消防公司对 BESS 设施存在高度易燃物质(例如来自锂离子电池)以及可能造成的空气和地下水污染表示担忧;鉴于今年夏天纽约电池储能设施在短短几个月内发生第三起火灾后,州长 Kathy Hochul 宣布成立一个州跨机构工作组,负责确保整个纽约电池储能系统的安全;鉴于镇委员会认为镇上必须对这些系统进行彻底检查,以确定任何可能对公共健康、安全和福利构成威胁的系统,并评估环境恶化的可能性;鉴于与 BESS 设施相关的其他潜在重大规划问题(例如冷却风扇产生的噪音)可能会影响我们居民的生活质量;鉴于巴比伦镇必须颁布临时禁令,以仔细评估 BESS 设施的影响,并评估它们可能如何影响镇上、镇上居民和消防基础设施;鉴于巴比伦镇委员会已确定,根据 SEQR 第 617.5(c)(30) 条,暂停申请建筑许可证和/或土地开发或建设电池储能系统设施的居住证构成 II 类行动,且拟议的禁令已被确定为对环境没有重大影响的行动,不受 SEQRA 审查。因此,巴比伦镇镇议会认为,巴比伦镇应实施暂停令,以便对 BESS 设施和最近成立的州跨机构工作组进行全面、慎重的审查,目的是保持该镇在电池储能系统监管领域满足其社区独特需求和关切的能力。
1深圳先进技术研究所,中国科学院,深圳518055,中国2深圳先进技术学院,中国科学院科学院,北京大学100049,中国3号,3月3日中国 *通讯作者:Hongyan Wu(hy.wu@siat.ac.cn)摘要:持续学习,模型随着时间的流逝而不必忘记以前的知识,因此对新数据的适应性,在疾病爆发预测等动态领域中至关重要。深神经网络,即LSTM,由于灾难性遗忘而容易出错。这项研究引入了一种新型的CEL模型,用于通过通过弹性重量巩固(EWC)利用域的适应性来进行持续学习。该模型旨在减轻域增量设置中的灾难性遗忘现象。使用EWC构建Fisher Information Matrix(FIM),以开发正规化术语,该术语对重要参数的变化进行了惩罚,即重要的先前知识。CEL的表现通过不同的指标评估了三种不同的疾病,流感,MPOX和麻疹。在评估和重新评估期间,高R平方值在几种情况下优于其他最新模型,表明CEL可以很好地适应增量数据。cel的鲁棒性和可靠性受到其最小的65%遗忘率和更高的记忆稳定性的强调。它提供了一个有价值的模型,可以通过准确,及时的预测进行主动疾病控制。这项研究强调了CEL在疾病爆发预测中的多功能性,以时间模式解决了不断发展的数据。
背景:多囊卵巢综合征 (PCOS) 影响着全球育龄妇女,发病率为 5% - 26%。越来越多的证据表明,微小 RNA (miRNA) 在 PCOS 的颗粒细胞 (GC) 病理生理中发挥着重要作用。目的:本研究的目的是通过分析三个不同的微阵列数据集,确定枢纽基因-miRNA 网络中差异表达最显著的 miRNA (DE-miRNA) 及其相应的靶标,并识别新的 DE-miRNA。此外,还使用生物信息学方法进行了功能富集分析。最后,研究了排名前 5 位的枢纽基因与药物之间的相互作用。方法:使用生物信息学方法,分析了基因表达总集 (GEO) 中的三个 GC 谱,即基因表达总集系列 (GSE)-34526、GSE114419 和 GSE137684。使用 multiMiR R 包预测排名靠前的 DE-miRNA 的靶标,并且仅检索具有验证结果的 miRNA。将“DE-miRNA 预测结果”和“现有组织 DE-mRNA”之间共同的基因指定为差异表达基因 (DEG)。对 DEG 实施了基因本体 (GO) 和通路富集分析。为了识别枢纽基因和枢纽 DE-miRNA,使用 Cytoscape 软件构建了蛋白质-蛋白质相互作用 (PPI) 网络和 miRNA-mRNA 相互作用网络。利用药物-基因相互作用数据库 (DGIdb) 数据库来识别排名靠前的枢纽基因与药物之间的相互作用。结果:从 GSE114419 和 GSE34526 微阵列数据集中检索到的前 20 个 DE-miRNA 中,只有 13 个通过 multiMiR 预测方法具有“验证结果”。在研究的 13 个 DE-miRNA 中,只有 5 个,即 hsa-miR-8085 、 hsa-miR-548w 、 hsa-miR-612 、 hsa-miR-1470 和 hsa-miR-644a,与我们研究中的枢纽基因-miRNA 网络中的 10 个枢纽基因表现出相互作用。除 hsa-miR-612 外,其他 4 个 DE-miRNA,包括 hsa-miR-8085 、 hsa-miR-548w 、 hsa-miR-1470 和 hsa-miR-644a ,都是新发现的,之前尚未在 PCOS 发病机制中报道过。此外,GO 和通路富集分析将京都基因和基因组百科全书 (KEGG) 中的“致病性大肠杆菌感染”和 FunRich 中的“调节 Rac1 活性”确定为主要通路。药物中心基因相互作用网络确定 ACTB 、 JUN 、 PTEN 、 KRAS 和 MAPK1 是使用治疗药物治疗 PCOS 的潜在靶点。结论:本研究结果可能有助于研究人员发现 PCOS 治疗中的新生物标志物和潜在治疗药物靶点。
关于宇宙原始状态的复杂性质的有力陈述是由基于一般相对论的经典描述中混乱动力学的通用特征[1,2]做出的。在早期,高阳光宇宙中不断发展的空间各向异性可以通过有效的潜力来描述,该有效潜力通过将各向异性参数限制为有限区域的墙壁编码时空曲率的效率。关于应用于这些墙的台球动力学的数学结果,这些壁恰好是凸面并因此散落,然后保证混乱[3]。量子效应,例如波动或对量子重力的各种几何影响,可能会使这种行为更加违反直觉和更难解开。因此,不可能找到对宇宙初始状态的可靠知识。尤其是,一系列关于超级和弦理论的研究在某种程度上证实了这一期望,表明当包括与统一相关的额外维度和领域时,动态仍然混乱[4,5]。这种新成分通过包括新的独立自由度,扩展了各向异性参数的经典配置空间。尽管如此,它们带来了自己的曲率贡献,这些曲率贡献在有效的各向异性潜力中具有定性特征,从而保持了混乱的动力学。这些模型并不是完全量子,因为它们不考虑具有波动和相关性的状态,并遵守不确定性关系。独立地,量子宇宙学具有波动状态,也已应用于这个问题,但到目前为止,结果混合了[6-9],例如diffi-
非酒精性脂肪性肝炎(NASH)是由肝细胞死亡通过caspase 6的激活而触发的,这是由于腺苷一磷酸腺苷(AMP)激活的蛋白激酶-Alpha(AMPKα)活性的降低而引起的。增加的肝细胞膜死亡会促进肝纤维化的炎症。我们表明,在纳什患者和纳什饮食中喂养的雄性小鼠中,核定定位的有丝分裂原活化蛋白激酶(MAPK)磷酸酶-1(MKP1)上调。这项工作的重点是研究MKP1是否以及如何参与NASH的发展。在NASH条件下增加氧化应激,诱导MKP1表达,导致核p38 MAPK去磷酸化并减少肝激酶B1(LKB1)磷酸化,以促进LKB1核出口所需的位点。nash饮食中MKP1的肝缺失喂养雄性小鼠将核LKB1释放到细胞质中,以激活AMPKα并防止肝细胞死亡,炎症和NASH。因此,需要核定定位的MKP1- P38 MAPK-LKB1信号传导才能抑制触发肝细胞死亡和NASH发展的AMPKα。
摘要:CGAS刺信信号传导是诱导I型IFN的主要途径,在防御巨型T. gondii感染中起着至关重要的作用。相比之下,T。Gondii制定了多种策略来抵消宿主防御,从而在广泛的宿主中引起严重疾病。在这里,我们证明了T. gondii Rhoptry蛋白16(ROP16)通过抑制CGA(环状GMP-AMP合酶)途径通过刺痛的多素化抑制I型干扰素信号传导。Mech-在动态上,ROP16通过信号域与STING相互作用,并抑制NLS(核定位信号)domain依赖性方式中STIN的K63连接的泛素化。conse,在Pru tachyzoites中淘汰了ROP16,促进了I型IFN的刺激介导的产生,并限制了T. gondii的复制。一起,这些发现描述了一种独特的途径,其中T. gondii利用了sting的泛素化来逃避宿主的抗寄生虫免疫,从而揭示了对宿主与寄生虫之间相互作用的新见解。
摘要这项研究旨在研究长期非编码RNA的母体外向基因3(LNCRNA MEG3)在骨肉瘤(OS)化学敏感性中的作用,并揭示可能的潜在机制。在这项研究中,我们发现在OS组织和细胞系中LNCRNA MEG3的表达显着降低。此外,通过抑制细胞增殖,迁移,自噬和促进抗肿瘤免疫力,LNCRNA MEG3过表达通过抑制细胞增殖,迁移,自噬来增强OS的化学敏度。lncRNA MEG3用作miR-21-5海绵,以调节OS中的p53表达。机械地,LNCRNA MEG3通过通过miR-21-5p/p53途径和自噬来调节抗肿瘤免疫来促进OS化学敏度。总体而言,这项研究提供了一个证据,表明LNCRNA MEG3可能是OS化学含量的有前途的治疗靶标。ª2021作者。Elsevier B.V.的发布服务代表KEAI Communications Co.,Ltd.这是CC BY-NC-ND许可证(http:// creativecommons。org/licenses/by-nc-nd/4.0/)。