1 CIBIT – 科英布拉大学科英布拉生物医学成像和转化研究中心,科英布拉,葡萄牙 2 ICNAS – 科英布拉大学健康应用核科学研究所,科英布拉,葡萄牙 3 ISR – 科英布拉大学系统与机器人研究所,科英布拉,葡萄牙 4 IPT – 托马尔理工学院,托马尔,葡萄牙 5 FCTUC – 科英布拉大学科学与技术学院,科英布拉,葡萄牙 6 FMUC – 科英布拉大学医学院生理学系,科英布拉,葡萄牙 7 LASI – 联合实验室,吉马良斯,葡萄牙 8 LASI – 北里约格兰德联邦大学 (UFRN) 脑研究所,巴西 * 同等贡献 通讯作者 (Miguel Castelo-Branco) 的电子邮件地址:mcbranco@fmed.uc.pt 资金:FCT/UIDP&B/4950
1心理学的认知,情感和方法系,维也纳大学,奥地利维也纳大学。2心理学系和瑞士情感科学中心,瑞士日内瓦大学。3纽约大学心理学系,美国纽约,美国。 4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。 5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch3纽约大学心理学系,美国纽约,美国。4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。9认知科学中心,维也纳大学,奥地利维也纳。10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。11当前地址:环境与气候研究中心(ECH),奥地利维也纳。电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch
在本文中,我们将逆设计的伴随方法推广到非逆局介质。作为测试案例,我们使用级别集方法使用三维拓扑优化,以优化单向能量转移,以换取尖端源和观察点。为了实现此目的,我们引入了一套工具,chie pl y我们称之为“法拉第 - 偶相”方法,该方法允许在存在磁光介质的情况下进行有效的形状优化。我们基于非常通用的方程式进行优化,该方程是我们在非偏型培养基中得出能量转移的,并通过概括性的born序列链接到分析的分析序列,将其链接到张量的次数介绍性。本文代表了朝着实用的纳米光学隔离的垫脚石,通常被视为综合光子学的“圣杯”。
1。北京北京大学认知神经科学与学习的国家主要实验室,中国2。IDG/McGovern大脑研究所,北京师范大学,北京,中国IDG/McGovern大脑研究所,北京师范大学,北京,中国
在超快激光写作和一般的轻度相互作用中,除非涉及热效应,否则人们已广泛认为,能量密度越高,材料变化越强。在这里,这种信念是通过证明能量密度降低(通过扫描速度提高和没有热积聚的)的挑战,这可导致硅胶玻璃的更明显的修饰,即,同型型折射率更高的增加或更大的纳米介导的纳米介导的模量化。这种违反直觉现象归因于焦点紧密相互作用的非局部性,其中光束束的强度梯度以及电荷载体的相关差异在增加材料修饰方面起着至关重要的作用。极化多路复用数据存储的写作速度提高了十倍,使用高传输基于纳米孔的修改实现MB S -1的潜力。
事实证明,因果关系的概率在现代决策中至关重要。本文涉及估计治疗和效果不是二元时因果关系概率的问题。珍珠定义了因果关系的二进制概率,例如必要性和充分性的概率(PNS),足够的概率(PS)和必要性的概率(PN)。tian和Pearl随后使用实验和观察数据得出了这些因果关系的尖锐边界。在本文中,我们定义并为各种因果关系的概率提供了理论上的界限,并提供了多价处理和效果。我们进一步讨论了示例,我们的界限指导实际决策并使用仿真研究来评估各种数据组合的界限的信息。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 3 月 8 日发布。;https://doi.org/10.1101/2024.03.05.582637 doi:bioRxiv 预印本
我们提出了一种触觉的新概念,其中一个集中式身体执行器通过刺激大脑(即神经系统的来源)在多个身体部位上产生触觉效果——我们称之为触觉源效应器,而不是传统可穿戴设备在每个身体部位(末端效应器)上连接一个执行器的方法。我们通过经颅磁刺激 (TMS) 实现我们的概念——这是一种来自神经科学/医学的非侵入性技术,其中电磁脉冲可以安全地刺激大脑区域。我们的方法在整个身体(例如,手、手臂、腿、脚和下巴——我们在第一次用户研究中发现)中产生大约 15 种触觉/力反馈感觉,所有这些都通过使用一个在头皮上机械移动的磁线圈刺激用户的感觉运动皮层来实现。在我们的第二项用户研究中,我们探讨了参与者在 VR 中使用触觉显示器时的体验。最后,随着
发现、梦想、设计和交付 我们与学生会解放官员和图书馆学生助理团队合作设计了四个数字化创意工作坊,并进行了反思以发现哪些方法有效。 2024 年 2 月 28 日,我们将把图书管理员和学生聚集在一起,进一步反思工作坊并共同梦想未来的愿景:想象一下这是 2034 年。您决定访问数字共享空间,看看图书馆非殖民化的梦想是如何发展的。您期待美好的事情发生,但这超出了您最疯狂的梦想。它是什么样子的?包括哪些技术?正在进行哪些研讨会和活动?你感觉如何?这是怎么发生的?