由于阳离子无序金属氧化物限制了锂离子的扩散,导致其电化学性能较差,因此早期研究较少重视阳离子无序金属氧化物作为锂离子电池正极材料的研究。然而,一种新的无序岩盐 (DRX) 结构材料 Li 1.211 Mo 0.467 Cr 0.3 O 2 的发现,其在 0.05 C 时具有 > 260 mAh g − 1 的高容量,为这一新兴领域开辟了新的研究前景,并确立了 DRX 材料作为一种有前途的替代品的地位,与目前广泛使用的层状正极材料相比,它具有更广泛的过渡金属元素选择。DRX 材料的一些主要障碍包括阻碍锂离子扩散的𝜸-LiFeO 2 型阳离子短程有序性、不可逆氧损失和过渡金属溶解,这些也对适当的表征技术提出了挑战。人们已经采用了多种性能优化策略,包括氟掺入、高熵改性和表面涂层。本评论文章重点介绍表征技术的进步,以揭示锂离子扩散和DRX正极材料降解的潜在机制,以解决上述挑战,并为未来对此类材料的研究提供启发。
抑郁症是一种对人有害的全球疾病。基于各种规模的传统识别方法不够客观和准确。脑电图(EEG)包含丰富的生理信息,这使其成为识别抑郁状态的新研究方向。但是,大多数基于EEG的算法仅提取原始的EEG特征,而忽略复杂的时空信息相互作用,这将降低性能。因此,迫切需要一种更准确和客观的抑郁识别方法。在这项工作中,我们提出了一种新型的抑郁识别模型:W-GCN-GRU。在我们提出的方法中,我们根据Spearman的等级相关系数审查了六个敏感特征,并通过AUC分配了不同的权重系数,以通过AUC进行敏感特征的加权融合。特别是,我们将基于加权敏感特征作为抑郁识别模型的GCN和GRU级联网络使用。对于GCN,我们创造性地基于相关系数矩阵将脑功能网络作为邻接矩阵输入和加权融合敏感的特征用作节点特征矩阵输入。我们所提出的模型在我们的自我收集的数据集和MODMA数据集上表现良好,精度为94.72%,表现优于其他方法。我们的发现表明,特征维度降低,加权融合和脑电图空间信息都对抑郁识别产生了很大影响。
尽管生物经济和生物基材料被广泛认为是解决气候变化的解决方案的一部分,但对生物碳的解释缺乏协调的指导,尤其是在临时存储中。我们在本文中的方法是试图以透明的方式处理系统的复杂性,并使行业能够传达生物基循环产品的摇篮到门口的GWP。然而,我们认识到LCA社区需要进一步制定一致性,稳定性,Yhulɠdelolw\ dqg HQKDQFHG fuhglelolw \ ri /&$ uhvxowv:kloh&uhvxowv:kloh&2ɓ从大气中删除,因此不再暂时存储,因此cuns cuns in cuns in n n in n n n in n n in n n n in n n n n n n n n n n n n n n n neTival中,因此未来又无法启动。在近期 /中期获得时间,并在开发其他解决方案的同时避免气候变化的严重影响。可以通过动态方法来完成LCA中临时存储的会计,这些方法正在LCA中出现,需要进一步标准化。将这种方法应用于再生PLA可能是获得更多见解的一种方式。
摘要:将高度多孔石墨烯(GO)气凝胶整体加热到超高温度的闪光灯加热被用作低碳足迹技术,以设计功能性气凝胶材料。首次证明了Airgel Joule加热至3000 K,并具有快速加热动力学(〜300 K·min-1),从而实现了快速和节能的闪光加热处理。在一系列材料制造的挑战中利用了超高温度闪光灯焦耳加热的广泛适用性。超高温度焦耳加热用于快速在快速时间尺度(30-300 s)的水热气凝凝胶快速地石墨退火,并大大降低了能量成本。闪光气凝胶加热至超高温度,用于原位合成超铁纳米颗粒(PT,CU和MOO 2)的原位合成,并嵌入了混合气瓶结构中。冲击波加热方法可以使形成的纳米颗粒的高渗透量均匀性,而纳米颗粒的大小可以通过控制1到10 s之间的焦耳加热持续时间来轻松调节。因此,此处介绍的超高温度加热方法对基于石墨烯的气凝胶的多种应用具有重要意义,包括3D热电材料,极端温度传感器和流动中的气瓶催化剂(电)化学。■简介
∗我们感谢Ed Altman,Jennie Bai,Richard Cantor,Olivier de Jonghe,Antonio Falato,Quirin Fleckenstein,Itay Goldstein,Victoria Ivashina,Kose John,Jane Li,Jane Li,Francis Longsta,Camelia Minoiuiu Minoiu,Minoiu,Andrea Presbitero,tyler,Tyler Miir和他们的评论。We also thank seminar and conference participants at the NBER Summer Institute Capital Markets and the Economy, AFA Annual Meetings, Cornell, Oxford Said–ETH Zurich Macro-finance Conference, 10th MoFiR Workshop on Banking, 2022 CEBRA Annual Meeting, KAIST, Deutsche Bundesbank/FRIC/CEPR “Credit Risk over the Business Cycle” conference, FSB Systemic Risks in Non-Bank Financial中介会议,2021年,美联储压力测试研究会议,CEPR无休止的金融中间和公司金融夏季会议,西班牙银行,纽约大学上海联合学校宏观/财务研讨会,纽约大学纽约大学,康奈尔大学,韩国康奈尔大学,韩国大学商学院,ku Leuven,Ku Leuven,梅尔伯恩大学,Norges Bank,Norges Bank,Norges Bank,Erasmus of ersasmus of ersasmus of ersasmus oftertam oftertam of ersasmus of ersasmus ofterdam carrolterdam carcarortdam carcarortdam carcarorty car of ersasmus car of ersasmus carcarorttam洪堡大学,Esade Spring Workshop和BIS以获取宝贵的评论。我们感谢Erica Bucchieri和William Arnesen的出色研究帮助。本文所表达的观点是作者的观点,不一定代表纽约联邦储备银行,美联储系统,BIS或其任何sta的观点。本文的先前版本带有“高昂特权?预期堕落天使的债券市场补贴”。通讯作者:Matteo Crosignani。电子邮件:matteo.crosignani@ny.frb.org。
与表现出尖锐的兴奋性光致发光(PL)的单一组件二维(2D)金属卤化物钙钛矿(MHP)不同,混合的PB-SN 2D晶格中出现了宽带PL。已经提出了两个物理模型 - 自我捕获的激子和缺陷诱导的stokes变度 - 用于解释这种非常规现象。然而,这两个解释都提供了有限的合理化,而无需考虑强大的组成空间,因此,宽带PL的基本起源仍然难以捉摸。在此,我们建立了高通量自动化的实验工作流程,以系统地探索混合PB-SN 2D MHP中的宽带PL,采用PEA(苯乙酰胺)作为一种模型阳离子,可作为刚性有机隔离器起作用。从频谱上讲,随着早期结晶期间PB浓度的增加,宽带PL通过快速PEA 2 PBI 4相分离而进一步扩大。违反直觉,尽管缺陷密度很高,但具有高PB浓度的MHP表现出长时间的PL寿命。高光谱显微镜在这些膜中识别出实质性PEA 2 PBI 4相分离,假设结晶时通过相分离来建立电荷转移激子,是造成非凡行为的原因。在高PB组成下,这远远超过了缺陷引起的发射的杠杆,从而产生了独特的PL性质。我们的高通量方法使我们能够调和有争议的先验模型,这些模型描述了2D PB-SN MHP中宽带发射的起源,从而阐明了如何全面探索复杂材料系统的基本原理和功能。
简介:机器翻译是一个具有重要科学和实际意义的现代自然语言处理研究领域。在实践中,语言的变化,语义知识的局限性以及缺乏平行语言资源限制了机器翻译的发展。目标:本文旨在避免在学习过程中复制神经网络,并提高具有有限资源的复杂神经网络机器翻译模型的能力。方法:研究源语言中的文本材料,并使用合适的文本材料表示模型来表达复杂,高级和抽象的语义信息。然后,基于书面数据和算法的控制开发了一个更有效的神经网络机器翻译集成模型。结果:基于转移学习以标准化有限的神经网络模型,必须将数据挖掘应用于复杂的神经网络机器翻译系统。结论:基于迁移训练的基于神经网络的嵌入式机器翻译系统需要少量标记的样品,以提高系统的渗透性。但是,这种自适应迁移学习区域方法可以很容易地导致神经网络翻译模型中的过度学习问题,从而避免了学习过程中过度的对应关系,并提高了具有有限的神经网络资源的翻译模型的概括能力。
本研究提出了一种对激光粉末融合的原位监测方法。使用标准的激光光学元件,在瞄准前扫描配置中获得了粉末床的同轴高分辨率多光谱图像。可以生成整个114×114 mm粉末床的连续概述图像,检测到直径低至20 µm的物体,最大偏移量为22-49 µm。通过从405 nm到850 nm的6个不同波长捕获图像来获得多光谱信息。与已建立方法的吸光度光谱相比,这允许在线确定粉末床的吸光度,最大偏差为2.5%。对于此方法的资格,已经在粉末表面和20种不同粉末的测试上进行射线追踪模拟。这些包括不同的颗粒大小,年龄和氧化粉末。
手性2D钙钛矿作为圆形极化的光致发光材料引起了极大的关注,但是这些材料通常在环境条件下表现出较弱的CPL。几项研究表明,使用强的外部磁场或低温可以增强CPL的程度。在这里,我们报告了一种通过使用极高的高压来调整手性2D钙钛矿的圆两极化的光致发光的方法。(S-和R-MBA)2 PBI 4钙钛矿表现出良好的光学可调性,其压力在PL波长,强度和带隙方面。极化分辨的光致发光测量表明,在环境压力下,CPL的程度从近乎零增加到8.5 GPA时高达10%。adxrd和拉曼结果表明,在施加压力时,结构失真和增加的层间耦合是造成增强性手性的。我们的发现提供了一种调整CPL材料并显示下一代CPL设备中潜在应用的新方法。
