校对测量,风洞试验中的动态试验。常规试验中的测量参数有平衡信号、升力、阻力、侧向力、偏航力矩、俯仰力矩、操纵面的各种铰力矩。平衡室压力、平衡室温度、模型底部压力、风洞总压、静压、总温、迎角:大概有十几个到二十几个参数。模型表面压力测量参数有几十个点到几个干点。风洞压力测量参数有几十个点到几百个规模。动态试验参数有脉动压力和各种交变振动信号。一般有十几个点到几十个点。 C 风洞测量原则 风洞实验数据质量的高低是通过实验数据不确定度大小的多少来评定的,数据不确定性的评定是整个风洞实验的关键我们在设计一个试验研究的过程,给出了风洞实验的研究流程以及影响实验数据不确定度的因素,做了以下工作: (1)风洞实验的目的和实验数据的不确定度分析,同时提出,在进行实验设计的同时,对实验数据的不确定度进行估计; (2)实验数据的不确定度分析贯穿于实验的整个过程; (3)实验数据的质量对于风洞实验具有“一票否决权”; (4)实验数据的不确定性分析与估计是实验报告的重要组成部分; (5)实验设计和测试系统的可靠性是保证实验数据质量的关键方面; (6)没有考虑空气的压缩性; (7)考虑了空气的压缩性。
背景 A380 配备有低速保护系统,可提供防失速保护,飞行员无法超越该系统。因此,必须调整 JAR 25 变更 15 的要求以考虑此失速保护功能。需要一个特殊条件。以下特殊条件也适用于空客 SA 和 LR 系列,允许将 JAR 25 要求调整为适用于空客飞机上使用的技术。特殊条件 1.定义此特殊条件涉及 A380 的新特点,并使用了 JAR 25 中未出现的术语。应适用以下定义: - 高迎角保护系统:直接自动操作飞机飞行控制装置的系统,将可达到的最大攻角限制为低于会发生空气动力失速的值。 - Alpha-floor 系统:当攻角增加到特定值时,自动增加运行发动机推力的系统。 - 阿尔法极限:在高入射保护系统运行且纵向控制保持在其后部停止的情况下,飞机稳定的最大攻角。 - V min:在高入射保护系统运行时,所考虑的飞机配置中的最小稳定飞行速度。请参阅本特殊条件的第 3 节。 - V min1g:V min 已校正为 1g 条件。请参阅本特殊条件的第 3 节。这是最小校准空速
摘要 2008 年 10 月 7 日,一架空客 A330-303 飞机(注册号 VH-QPA,航班号为澳航 72)从新加坡起飞,执行定期客运服务,飞往西澳大利亚珀斯。当飞机在 37,000 英尺的高度巡航时,飞机的三个大气数据惯性参考装置 (ADIRU) 之一开始向其他飞机系统输出所有飞行参数的间歇性错误值(尖峰)。两分钟后,由于迎角 (AOA) 数据出现尖峰,飞机的飞行控制主计算机 (FCPC) 命令飞机俯冲。机上 303 名乘客中至少有 110 人和 12 名机组人员中有 9 人受伤;其中 12 名乘客受重伤,另有 39 人送往医院接受治疗。虽然 FCPC 算法处理 AOA 数据通常非常有效,但它无法处理一个 ADIRU 的 AOA 出现多个峰值且间隔 1.2 秒的情况。该事件是 A330/A340 飞机超过 2800 万飞行小时中唯一已知的因该设计限制导致俯冲命令的例子,飞机制造商随后重新设计了 AOA 算法,以防止再次发生相同类型的事故。每个间歇性数据峰值可能都是在 LTN-101 ADIRU 的中央处理器 (CPU) 模块将一个参数的数据值与另一个参数的标签相结合时产生的。故障模式可能是由
执行摘要 美国空军飞机事故调查 F-15C,T/N 84-0008 在日本嘉手纳空军基地附近 2018 年 6 月 11 日 2018 年 6 月 11 日,大约当地时间 06:17,事故飞机 (MA),一架 F-15C,T/N 84-0008,隶属于第 44 战斗机中队 (44 FS)、第 18 联队 (18 WG),在日本嘉手纳空军基地以南约 70 英里处坠毁在太平洋。MA 在撞击中解体,损失价值 42,360,014.00 美元。事故飞行员 (MP) 从 MA 中弹出并受重伤。日本航空自卫队 (JASDF) 救援部队驾驶 UH-60J 直升机从那霸国际机场将宪兵救出并送往日本福斯特营的一家军医院。没有人员伤亡或平民财产损失。当地、国家和国际机构对此进行了报道,引起了媒体的关注。宪兵在一次不同型号的基本战斗机机动 (BFM) 飞行中担任双机编队的领头,与隶属于第 525 战斗机中队的一架 F-22A 一起飞行。在与事故僚机 (MW) 进行防御性机动时,在大约 5,400 英尺平均海平面 (MSL) 和 180 节指示空速 (KIAS) 时,MP 开始垂直爬升至 65 度机头高、20 度右倾、39 度迎角 (AOA) 和 1.2 Gs,在发生显著机头下坠之前,在 6,300 英尺 MSL 和 105 KIAS 附近达到顶点。MP 认为 MA 没有按预期跟踪,并开始卸载
飞行员通常认为,在航空母舰上着陆是最困难的训练之一,因为能见度条件、航空母舰动力学和狭小的着陆区使着陆变得复杂。根据能见度条件,可以使用几种接近航空母舰的方法,如 [1] 中所述。在我们的案例中,研究的轨迹包括在距离航空母舰 7.5 公里处开始下降,并将钩子放在所需的下降滑行上。为了确保着陆精度,不进行拉平。方法可以总结为保持下降率和迎角恒定,以保持飞机稳定性并防止失速。航空母舰上的着陆控制并不是一个新问题。它使用经典传感器(如雷达或相对 GPS [2])进行研究,这些传感器确定相对于参考轨迹的误差,并使用控制律对其进行校正,该控制律可以是最优的 [3] 或鲁棒的 [4]。[3] 中实现了一些航空母舰动力学预测模型,以改进控制。几十年来,出于认知和安全方面的考虑,人们一直在研究飞行员着陆时使用的视觉特征。目的是了解飞行员使用的特征并确定他们的敏感性[5],以便模拟人类反应并改善飞行员训练。[6] 介绍了用于在对准、进近和着陆期间控制飞机的视觉特征的相当完整的最新技术水平。例如,消失点和撞击点之间的距离允许飞行员跟随下降滑行。在[7]和[8]中,考虑到小角度假设,建立了相对姿势和视觉特征之间的联系。航母着陆主要在辅助系统范围内研究,该辅助系统处理光学着陆系统的可见性。海军飞行员降落在航母上的方法之一是控制飞机,以便将平视显示器 (HUD) 上的下滑道矢量聚焦到甲板上的三角形标记上,如图 1a 所示。另一种方法是将飞机的下滑道矢量与甲板上的三角形标记对齐,如图 1a 所示。
两架波音 737-Max 商用客机最近坠毁,引发了人们对嵌入式计算系统 (MCAS) 的重要质疑,该系统的安装是为了让新的 737 机型在人类飞行员眼中更像旧机型 [ 1 ]。提出的关键问题之一是,人类飞行员并不知道该系统的存在,而且该系统的“智能”容易出现单点故障(迎角传感器)[ 1 ]。人工智能 (AI) 将在这种系统中发挥越来越重要的作用,尤其是当自主机器在太空或深海等遥远而恶劣的环境中运行时 [ 2 ]。在这种恶劣的环境下,当发生故障时,准确评估问题所在至关重要,这样设计人员才能从故障中吸取教训。同时,当此类系统做出基于证据的决策时,解释为什么以及如何做出某个决策至关重要。欧盟法律要求对此类解释进行解释,这是 2016 年颁布的“解释权”的一部分,主要是在对公民产生不利影响的决策背景下。现代人工智能系统利用嘈杂且通常不确定的数据来代表人类做出决策。当这些系统发挥作用时,它们具有很大的实用性,可用于自动驾驶汽车和在恶劣环境中运行的自主机器人等。除了实用性之外,这些系统还可以采用自学模式,使它们在国际象棋和围棋等游戏中超越人类的能力 [ 3 – 5 ]。然而,与人类智能一样,人工智能有时也未能实现目标。一个众所周知的失败案例是特斯拉 Model S,由于人工智能对白色卡车的特征提取和智能理解不准确,导致汽车在“自动驾驶模式”下发生致命车祸 [6]。人工智能的失败并不令人惊讶。智能是基于不确定性做出决策的行为。这一事实将人工智能与基于流程图设计的非智能决策系统区分开来,就像大多数计算机程序一样 [7]。对于人类来说,在童年和成年时期,许多类型的学习都需要这样的失败。大多数机器学习 (ML) 人工智能算法还依赖于“训练阶段”,在此阶段,工件在人类标记的数据集上进行指导,并从失败中学习,然后才被允许在非标记数据上“野外”运行 [8]。
2002 年 4 月 12 日,星期五 阿尔弗雷德·迪金森先生 主管调查员 (IIC) CMR 5054 重大调查部 国家运输安全委员会 AS-10 5305 室 490 L’Enfant Plaza East, SW 华盛顿特区 20594-003 亲爱的迪金森先生: 根据委员会的规定,航空公司飞行员协会就 2001 年 3 月 19 日在佛罗里达州西棕榈滩附近发生的 Comair 航空公司 5054 号航班事故提交以下评论。2001 年 3 月 19 日,一架作为 Comair 5054 号航班运营的 Embraer EMB-120 飞机在从巴哈马拿骚飞往佛罗里达州奥兰多的途中启用自动驾驶仪,在从 18,000 英尺的高度下降到 17,000 英尺后遇到结冰情况。在结冰过程中,飞机开始减速,自动驾驶仪开始调整升降舵以保持高度。空速继续下降,飞机脱离了受控飞行。机组人员随后断开了自动驾驶仪。在接管飞机的手动控制后,机组人员试图通过减小迎角和增加功率来恢复控制,但发现控制轮极难向前推。此时,飞机开始经历明显的滚转偏移,因为它在 IFR 条件下下降到大约 10,000 英尺(损失 7,000 英尺)然后离开云层,这使得机组人员能够通过目视参考确定他们的姿态和恢复程序,因为在飞机失控期间,飞机的电子姿态显示指示器 (EADI) 已经熄灭。机组人员改道飞往西棕榈滩,飞机顺利降落。在飞行后检查中,机组人员发现飞机受损严重,并注意到飞机在失控下降过程中升降舵和稳定器明显发生了永久变形。这起近乎灾难性的事故的关键问题肯定是关键飞行仪表 (EADI) 在飞行的关键阶段出现故障。这不是第一次发生。还必须重申的是,Comair 3272 和 Westair 7233 事故发生已经 5 年多了,这两起事故都表明 EMB-120 在结冰条件下具有出色的飞行操纵性能。例如,Comair 3272 航班和 Westair 7233 航班均在结冰条件下发生过类似的失控事故。这几乎是 EMB-120 的另一起灾难性事故,该飞机在结冰条件下处理问题已有 20 年的历史。美国联邦航空局和制造商均未纠正这一操作不当的问题,ALPA 也不认为美国国家运输安全委员会过去的建议已得到充分实施。
2002 年 4 月 12 日,星期五 阿尔弗雷德·迪金森先生 主管调查员 (IIC) CMR 5054 重大调查部 国家运输安全委员会 AS-10 5305 室 490 L’Enfant Plaza East, SW 华盛顿特区 20594-003 亲爱的迪金森先生: 根据委员会的规定,航空公司飞行员协会就 2001 年 3 月 19 日在佛罗里达州西棕榈滩附近发生的 Comair 航空公司 5054 号航班事故提交以下评论。2001 年 3 月 19 日,一架作为 Comair 5054 号航班运营的 Embraer EMB-120 飞机在从巴哈马拿骚飞往佛罗里达州奥兰多的途中启用自动驾驶仪,在从 18,000 英尺的高度下降到 17,000 英尺后遇到结冰情况。在结冰过程中,飞机开始减速,自动驾驶仪开始调整升降舵以保持高度。空速继续下降,飞机脱离了受控飞行。机组人员随后断开了自动驾驶仪。在接管飞机的手动控制后,机组人员试图通过减小迎角和增加功率来恢复控制,但发现控制轮极难向前推。此时,飞机开始经历明显的滚转偏移,因为它在 IFR 条件下下降到大约 10,000 英尺(损失 7,000 英尺)然后离开云层,这使得机组人员能够通过目视参考确定他们的姿态和恢复程序,因为在飞机失控期间,飞机的电子姿态显示指示器 (EADI) 已经熄灭。机组人员改道飞往西棕榈滩,飞机顺利降落。在飞行后检查中,机组人员发现飞机受损严重,并注意到飞机在失控下降过程中升降舵和稳定器明显发生了永久变形。这起近乎灾难性的事故的关键问题肯定是关键飞行仪表 (EADI) 在飞行的关键阶段出现故障。这不是第一次发生。还必须重申的是,Comair 3272 和 Westair 7233 事故发生已经 5 年多了,这两起事故都表明 EMB-120 在结冰条件下具有出色的飞行操纵性能。例如,Comair 3272 航班和 Westair 7233 航班均在结冰条件下发生过类似的失控事故。这几乎是 EMB-120 的另一起灾难性事故,该飞机在结冰条件下处理问题已有 20 年的历史。美国联邦航空局和制造商均未纠正这一操作不当的问题,ALPA 也不认为美国国家运输安全委员会过去的建议已得到充分实施。
执行摘要 F-35A,T/N 12-005053 佛罗里达州埃格林空军基地 2020 年 5 月 19 日 2020 年 5 月 19 日晚 2126L,事故飞机(MA),一架尾号为 (T/N) 12-005053 的 F-35A 飞机在佛罗里达州 (FL) 埃格林空军基地 (AFB) 的 30 号跑道上坠毁。这架 MA 由第 58 战斗机中队 (FS)、第 33 作战大队 (OG) 操作,隶属于第 33 战斗机联队。事故飞行员 (MP) 安全弹射,但受伤没有生命危险。这架价值 175,983,949 美元的 MA 翻滚、起火并被彻底摧毁。在进近和着陆过程中,MP 设定并保持 202 节校准空速 (KCAS)。飞机以大约 50 KCAS 的速度快速着陆,比着陆要求的倾斜度浅约 8 度,迎角为 5.2 度。飞机着陆持续了大约五秒钟,之后 MP 弹射。飞机机头以高速下降,前起落架在主起落架之后立即接触跑道。接下来,MA 经历了一次明显的机头高弹跳。在最初的弹跳之后,MP 进行了操纵杆输入,试图恢复并设定着陆姿态。然而,MP 的操纵杆输入很快就与飞机俯仰振荡和飞机控制周期不同步。接地两秒后,MP 设定并保持后操纵杆,这通常会使飞机机头抬高。在指挥后操纵杆约一秒钟后,飞行员还指挥油门全开加力燃烧器。这两个动作都与试图建立一种姿态一致,这种姿态将允许飞机起飞并复飞以进行另一次着陆尝试。尽管飞行员保持后操纵杆三秒钟,水平稳定器仍保持完全向下偏转,这会使飞机机头向下。在多次且逐渐恶化的弹跳后试图复飞失败后,MP 松开操纵杆进行弹射。AIB 主席根据大量证据发现,事故首先是由 MA 以 202 KCAS 速度着陆引起的,其次是由 MA 飞行控制面(即飞机尾部)在着陆时与 MP 输入相冲突引起的,导致 MP 无法从飞机振荡中恢复。AIB 主席还根据大量证据发现,另外四个因素是导致事故的重要因素。根据美国法典第 10 章主要影响因素包括:MP 在着陆时开启了速度保持功能并使用了备选交叉检查方法,MP 头盔显示器未对准导致 MP 在飞行的关键阶段分心,MP 因疲劳导致认知能力下降,并且 MP 缺乏飞行控制逻辑的系统知识。§ 2254(d) 事故调查员在事故调查报告中对事故原因或促成事故的因素的意见(如果有)不得被视为因事故引起的任何民事或刑事诉讼的证据,此类信息也不得被视为美国或这些结论或声明中提及的任何人承认承担责任。