患有大脑或脊髓相关瘫痪的人通常需要依靠他人来完成基本任务,这限制了他们的独立性。一种潜在的解决方案是脑机接口 (BMI),它可以让他们通过将大脑活动解码为运动命令来自愿控制外部设备(例如机械臂)。在过去十年中,深度学习解码器在大多数 BMI 应用中都取得了最先进的成果,从语音生成到手指控制。然而,深度学习解码器的“黑匣子”性质可能会导致意外行为,从而在现实世界的物理控制场景中造成重大安全隐患。在这些应用中,可解释但性能较低的解码器(例如卡尔曼滤波器 (KF))仍然是常态。在这项研究中,我们设计了一个基于 KalmanNet 的 BMI 解码器,KalmanNet 是 KF 的扩展,它使用循环神经网络来增强其操作以计算卡尔曼增益。这会导致在输入和动态之间变化的“信任”。我们使用该算法根据两只猴子的大脑活动来预测手指运动。我们将离线(预先记录的数据,n = 13 天)和在线(实时预测,n = 5 天)的 KalmanNet 结果与简单的 KF 和两种具有最先进结果的最新深度学习算法进行了比较:tcFNN 和 LSTM。KalmanNet 在离线和在线模式下取得了与其他深度学习模型相当或更好的结果,依靠动态模型来停止,而更多地依靠神经输入来启动运动。我们通过实施使用相同策略的异方差 KF 进一步验证了这一机制,并且它也接近最先进的性能,同时仍在标准 KF 的可解释范围内。然而,我们也看到了 KalmanNet 的两个缺点。KalmanNet 与现有的深度学习解码器一样具有有限的泛化能力,并且它使用 KF 作为归纳偏差在存在看不见的噪声分布的情况下限制了其性能。尽管存在这种权衡,我们的分析成功地整合了传统控制和现代深度学习方法,以激发高性能且仍可解释的 BMI 设计。
自计算机出现以来,人类一直在寻求富有表现力、直观且通用的计算机输入技术。虽然已经开发了多种模式,包括键盘、鼠标和触摸屏,但它们需要与中间设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统利用摄像头或惯性传感器来避免使用中间设备,但它们往往只在不被遮挡或明显的动作中表现良好。几十年来,人们一直在设想脑机接口 (BCI),通过允许仅通过思维向计算机输入来解决接口问题。然而,高带宽通信仅使用为单个个体设计的解码器的侵入式 BCI 进行了演示,因此无法扩展到普通大众。相比之下,肌肉中的神经运动信号可以访问细微的手势和力量信息。在这里,我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高度灵敏且强大的硬件平台,该平台易于佩戴/脱下,可感知手腕上的肌电活动并将有意的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,该基础设施可从数千名同意的参与者那里收集训练数据,这使我们能够开发通用的 sEMG 神经网络解码模型,该模型适用于许多人,而无需对每个人进行校准。未包括在训练集中的测试用户在连续导航任务中以每秒 0.5 次目标获取、在离散手势任务中以每秒 0.9 次手势检测和每分钟 17.0 个调整字的速度展示手势解码的闭环中值性能。我们证明,通过为个人个性化 sEMG 解码模型,输入带宽可以进一步提高 30%,预计未来人类和机器将共同适应,提供无缝翻译人类意图的功能。据我们所知,这是第一个直接利用生物信号的高带宽神经运动接口,具有跨人群的高性能开箱即用泛化功能。
自计算机出现以来,人类一直在寻求富有表现力、直观且通用的计算机输入技术。虽然已经开发了多种模式,包括键盘、鼠标和触摸屏,但它们需要与中间设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统利用摄像头或惯性传感器来避免使用中间设备,但它们往往只在不被遮挡或明显的动作中表现良好。几十年来,人们一直在设想脑机接口 (BCI),通过允许仅通过思维向计算机输入来解决接口问题。然而,高带宽通信仅使用为单个个体设计的解码器的侵入式 BCI 进行了演示,因此无法扩展到普通大众。相比之下,肌肉中的神经运动信号可以访问细微的手势和力量信息。在这里,我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高度灵敏且强大的硬件平台,该平台易于佩戴/脱下,可感知手腕上的肌电活动并将有意的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,该基础设施可从数千名同意的参与者那里收集训练数据,这使我们能够开发通用的 sEMG 神经网络解码模型,该模型适用于许多人,而无需对每个人进行校准。未包括在训练集中的测试用户在连续导航任务中以每秒 0.5 次目标获取、在离散手势任务中以每秒 0.9 次手势检测和每分钟 17.0 个调整字的速度展示手势解码的闭环中值性能。我们证明,通过为个人个性化 sEMG 解码模型,输入带宽可以进一步提高 30%,预计未来人类和机器将共同适应,提供无缝翻译人类意图的功能。据我们所知,这是第一个直接利用生物信号的高带宽神经运动接口,具有跨人群的高性能开箱即用泛化功能。
力量训练会增加肌肉力量,这是由肌肉产生的最大力量(Hong等,2014; Moore等,2004)。Improving muscular strength serves to reduce the likelihood of injury occurrence (Brooks et al., 2006 ), lowers the probability of encountering mus- culoskeletal conditions such as osteoarthritis (Zhang & Jordan, 2010 ), enhances metabolic well-being (Ihalainen et al., 2019 ), augments the mobility of older adults (Brandon et al., 2003 ) and improves运动能力(Comfort等,2012)。因此,建议对包括运动员和年轻人和老年人在内的所有人群进行力量训练(2009; Liu&Latham,2009)。神经适应能力增加了力量训练后肌肉的最大自愿产生能力的增加(Carroll等,2002; Jensen等,2005; Nuzzo等,2017; Siddique等,2020)。强度训练被认为会增加对受过训练的肌肉的神经驱动(Aagaard等,2002;Tøien等,2018),驱动器或运动命令的增加可能是从主运动皮层(M1)到Spinnaus Motoneu-rons中强度训练诱导的中枢神经系统(CNS)内部差异的变化的结果。可能的变化包括增加皮质的兴奋性和短间隔皮质抑制作用(SICI)(Siddique等,2020)。然而,最近的研究报道了SICI(Ansdell et al。,2020)或皮质脊髓兴奋性(Ansdell等,2020; Colomer-Poveda等,2021)的缺乏。最近的一项研究报告说,第一个有助于控制上肢肌肉中收缩力的控制(Glover&Baker,2022)。这意味着其他神经结构或下降的概率或存在,可能是网状脊髓道(RST),基于训练引起的实力增长的基础(Aagaard等,2020; Atkinson等,2022; Hortob Agyi等,2021; Atkinson等人,2021年)。RST是锥形跨膜的主要植物,起源于庞然大物的网状形成,其双侧与近端和远端肌肉的α-大型神经元形成直接和间接的突触连接(Brownstone&Chopek,2018; Drew等,2004; nathan; Nathan et al。其他工作支持这样的想法,即在非人类灵长类动物的力量训练之后,RST可能是提高强度的潜在机制(Atkinson等,2022; Glover&Baker,2020)。脑干内网状形成的深层解剖学位置使它
脑部计算机界面(BCIS)近年来已经达到了重要的里程碑,但是连续控制运动中的大多数突破都集中在具有运动皮层或周围神经的侵入性神经界面上。相比之下,非侵入性BCI主要在使用事件相关数据的连续解码方面取得了进展,而大脑数据的运动命令或肌肉力的直接解码是一个开放的挑战。来自人类皮层的多模式信号,从相结合的氧合和电信号的移动脑成像中获得,由于缺乏能够融合和解码这些混合测量值的计算技术,因此尚未发挥其全部潜力。为了刺激研究社区和机器学习技术,更接近人工智能的最新技术,我们在此释放了一个整体数据集的混合性非侵入性措施,以进行连续力解码:混合动力学握把(Hygrip)数据集。We aim to provide a complete data set that comprises the target force for the left/right-hand cortical brain signals in form of electroencephalography (EEG) with high temporal resolution and functional near-infrared spectroscopy (fNIRS), which captures in higher spatial resolution a BOLD-like cortical brain response, as well as the muscle activity (EMG) of the grip muscles, the force generated at the grip sensor (力)和混淆噪声源,例如任务过程中的呼吸和眼动活动。总共14位右手受试者在每只手最大自愿收缩的25–50%内执行了单项动态握力任务。Hygrip旨在作为基准,其中有两个开放挑战和用于抓地力解码的研究问题。首先是跨越时间尺度的大脑信号的数据的剥削和融合,因为脑电图的变化速度比FNIRS快三个数量级。第二个是与每只手使用的全脑信号的解码,以及每只手共享特征的程度,或者相反,每只手不同。我们的同伴代码使BCI,神经生理学和机器学习社区中的研究人员易于获取数据。hygrip可以用作开发BCI解码算法和响应的测试床,从而融合了多模式脑信号。由此产生的方法将有助于理解局限性和机会,从而使人们在健康方面受益,并间接地为类似的方法提供信息,从而满足疾病中人们的特殊需求。
机器人系统基础单元 - I 简介:机器人解剖学 - 定义、机器人定律、机器人的历史和术语 - 机器人的准确性和重复性 - 简单问题 - 机器人的规格 - 机器人的速度 - 机器人关节和链接 - 机器人分类 - 机器人系统架构 - 机器人驱动系统 - 液压、气动和电气系统。单元 - II:末端执行器和机器人控制:机械夹持器 - 曲柄滑块机构、螺旋式、旋转执行器、凸轮式 - 磁性夹持器 - 真空夹持器 - 气动夹持器 - 夹持力分析 - 夹持器设计 - 简单问题 - 机器人控制 - 点对点控制、连续路径控制、智能机器人 - 机器人关节控制系统 - 控制动作 - 反馈装置 - 编码器、解析器、 LVDT - 运动插值 - 自适应控制。第三单元:机器人变换和传感器:机器人运动学 - 类型 - 2D 和 3D 变换 - 缩放、旋转、平移 - 齐次坐标、多个变换 - 简单问题。机器人中的传感器 - 触摸传感器 - 触觉传感器 - 近距离和范围传感器 - 机器人视觉传感器 - 力传感器 - 光传感器、压力传感器。第四单元:机器人单元设计和微/纳米机器人系统:机器人工作单元设计和控制 - 序列控制、操作员界面、机器人中的安全监控设备 - 移动机器人工作原理、使用 MATLAB 进行驱动、NXT 软件介绍 - 机器人应用 - 材料处理、机器装卸、装配、检查、焊接、喷漆和海底机器人。微/纳米机器人系统概述-缩放效应-自上而下和自下而上的方法-微/纳米机器人系统的执行器-纳米机器人通信技术-微/纳米夹持器的制造-爬壁微型机器人的工作原理-仿生机器人-群体机器人-纳米机器人在靶向药物输送系统中的应用。单元 - V:机器人编程-介绍-类型-柔性吊坠-引导编程,机器人坐标系统,机器人控制器-主要组件,功能-腕部机构-插值-联锁命令-机器人的操作模式,慢跑类型,机器人规格-运动命令,末端执行器和传感器命令。机器人语言-分类,结构-VAL-语言命令运动控制,手动控制,程序控制,拾取和放置应用,使用 VAL 的码垛应用,使用 VAL 程序的机器人焊接应用-WAIT、SIGNAL 和 DELAY 命令使用简单应用程序进行通信。 RAPID-语言基本命令-运动指令-使用工业机器人进行拾取和放置操作-手动模式、自动模式、基于子程序命令的编程。移动-主命令语言-介绍、语法、简单问题。VAL-II 编程-基本命令、应用程序-使用条件语句的简单问题-简单的拾取和放置应用程序。
†同等贡献 *相应的作者隶属关系:1个生物医学工程的人工智能部门,弗里德里希 - 亚历山大 - 大学 - 埃尔兰根 - 纽伦伯格;德国埃尔兰根。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。 3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。 *通讯作者。 电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。 然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。 在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。 我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。 经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。 然后使用这些电动机单元按比例地控制机器人第六指。 所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。 这可以显着改善瘫痪者的生活质量。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。*通讯作者。电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。然后使用这些电动机单元按比例地控制机器人第六指。所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。这可以显着改善瘫痪者的生活质量。我们的发现提出了协助手部功能的变革性步骤,提供了直观且非侵入性的神经合法界面,而无需学习新的运动技能,因为参与者使用与受伤前相同的运动命令。主文本:简介恢复手功能的关键重点是脊柱α运动神经元的活性,这是神经肌肉系统的最后电动途径。众所周知,即使被归类为完整的脊髓损伤(SCI)的个体,也可能保留1-4损伤高于损伤水平上方和之下的一些较不幸的神经连接。在先前涉及具有运动SCI的个体(八个具有C5-C6损伤水平的参与者)的研究中,我们证明了使用高密度表面肌电图(HDSEMG)通过非侵入性神经界面进行任务调节的运动单位,从而实现了手指运动的解码2。所有参与者在特定的电动机单位和