摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
• 粒子漂移的方向从一个太阳黑子周期变化到下一个周期。 • 对于 A>0,当 GCR 进入日光层时,漂移将它们带向两极并沿着电流片向外移动。 • 对于 A<0,模式相反(“A 负”)
冠军军系统还包括代表法国残奥会代表团 11% 以上的残疾运动员(28 名 SHND 入选,其中 23 名隶属于行政总秘书处,4 名隶属于国家宪兵队,1 名隶属于军队)。在2021年东京举行的上届残奥会上,他们赢得了法国54%的金牌。
对授粉过程的准确预测是可持续粮食生产和自然生态系统保护的关键挑战。对于许多植物,花粉扩散是由蜜蜂动物的觅食运动介导的。虽然大多数当前的授粉生态模型都采用随机的花粉运动,但对动物行为的研究表明,授粉昆虫,鸟类和蝙蝠如何依赖感官提示,学习和记忆来参观流量,从而产生复杂的运动模式。基于对授粉和运动模型的简要回顾,我们认为我们需要更好地考虑授粉媒介的认知,以改善从各个空间量表中对动物介导的授粉的预测,从单个流动物到植物,植物,栖息地斑块和景观。我们提出了将行为模型整合到授粉模型中的实用路线图,并讨论该合成如何对植物交配模式和拟合度进行修复预测。在动物行为和植物生态学研究之间的这种串扰将为迫在眉睫的危机提供强大的机械工具来预测和对授粉服务采取行动。
信息检索是一个不断发展且至关重要的搜索域。对高质量人类运动数据的大量需求,尤其是在在线获取中,导致人类运动研究工作的激增。先前的作品主要集中在双模式学习上,例如文本和运动任务,但是很少探索三模式学习。直觉上,额外的引入方式可以丰富模型的应用程序方案,更重要的是,对额外模式的适当选择也可以充当中介,并增强其他两个不同方式之间的对齐方式。在这项工作中,我们介绍了Lavimo(语言视频 - 动作对齐),这是一个三模式学习的新型框架,将以人为中心的视频整合为一种额外的方式,从而可以在文本和运动之间弥合差距。更重要的是,我们的方法利用了一种专门设计的注意机制来增强文本,视频和运动方式之间的一致性和协同作用。经验,我们对HumanML3D和Kit-ML数据集的结果表明,Lavimo在各种与运动相关的跨模式检索任务中实现了最先进的表现,包括文本到动作,动作到运动,视频,视频到视频,动作和动态。我们的项目网页可以在https://lavimo2023.github.io/lavimo/中找到。
上午,来自国土防御班的年轻人、罗纳防御学院的学员、青年武装力量委员会成员组织——Ambérieu-en-Bugey 志愿军事服务队、青年航空中队、EPIDE(里昂梅济约青年和商业协会 (AJE) 的一名运动员 (融入就业) 将与军队和三名冠军军运动员一起参加团队课程:
本课程介绍与体育技术、创新和创业相关的基本主题。涵盖与体育工程、制作和编码文化、体育材料和可穿戴技术以及数据分析相关的内容,为您提供有关体育技术和创新的广泛知识。您还将被指导如何对体育或运动相关的电子产品进行编程和原型设计。本课程的最后一个部分涉及商业计划的制定。本课程对于体育科学和管理专业的学生都很重要,因为所涵盖的内容将帮助您了解工业 4.0 对该领域的影响。
由于其广泛的应用范围,从文本描述中产生人类动作已引起了越来越多的研究兴趣。但是,只有少数作品将人类场景的互动与文本条件一起考虑,这对于视觉和物理现实主义至关重要。本文提出了在3D门场景中产生人类动作的任务,鉴于人类习惯的文本描述。由于文本,场景和运动的多种形式性质以及对空间推理的需求,此任务提出了挑战。为了应对这些挑战,我们提出了一种新方法,将复杂的概率分解为两个更可管理的子问题:(1)目标对象的语言接地和(2)以对象为中心的信息产生。对于目标对象的语言基础,我们利用大型语言模型的力量。对于运动生成,我们设计了一个以对象为中心的场景代表生成模型,以专注于目标对象,从而降低场景的复杂性并促进人类运动与对象之间关系的建模。实验证明了与基准相比,我们的方法的更好运动质量并验证了我们的设计选择。代码将在链接上可用。