2020; Jin等。,2020b; Ayoub等。,2020年; Kakade等。,2020年; Du等。,2021)。特别是,对于有限的状态空间,神经功能近似值取得了显着的成功(Mnih等人。,2015年; Berner等。,2019年; Arulkumaran等。,2019年),而线性函数近似器理论上变得更好地理解(Yang和Wang,2020; Jin等人。,2020b; Ayoub等。,2020年; Kakade等。,2020年; Du等。,2021)。相比之下,尽管在实践中普遍存在,但在部分观察到的马尔可夫决策过程中的强化学习(POMDPS)较少地研究(Cassandra等人,1996; Hauskrecht和Fraser,2000年; Brown and Sandholm,2018年; Ra i Qerty等。,2011年)。更具体地,部分可观察性构成了统计和计算。从统计的角度来看,由于缺乏马尔可夫财产,预测未来的奖励,观察或国家是一项挑战。尤其是,预测未来通常涉及推断国家的分布(也称为信仰状态)或其功能作为历史的摘要,即使假设(observation)发射和(状态)过渡内核也已知(Vlassis etal。 ,2012年; Golowich等。 ,2022)。 同时,学习发射和过渡内核面临因果推理通常遇到的各种问题(Zhang and Bareinboim,2016年)。 ,2021)。 ,2020a)。,2012年; Golowich等。,2022)。同时,学习发射和过渡内核面临因果推理通常遇到的各种问题(Zhang and Bareinboim,2016年)。,2021)。,2020a)。例如,它们通常是不可实现的(Kallus等人。即使假设它们是能够识别的,它们的估计可能需要一个样本量,该样本量在地平线和维度上成倍缩小(Jin等人。即使在评估政策方面,这种统计挑战也已经令人难以置信(Nair和Jiang,2021; Kallus等人。,2021; Bennett和Kallus,2021),构成了政策优化的基础。从计算角度来看,众所周知,策略优化通常是棘手的(Vlassis et al。,2012年; Golowich等。,2022)。此外,有限的观察和状态空间扩大了统计和计算挑战。另一方面,大多数现有结果仅限于表格设置(Azizzadenesheli等人。,2016年; Guo等。,2016年; Jin等。,2020a; Xiong等。,2021),其中观察和状态空间是有限的。在本文中,我们研究了POMDP中的线性函数近似,以解决有限观察和状态空间所扩增的实力挑战。尤其是我们的贡献是四倍。首先,我们定义了具有线性结构的一类POMDP,并确定了针对样品良好的增强学习的不良调节措施。这样的不良调节措施对应于表格设置中的重复(Jin等人,2020a)。第二,我们提出了一种增强学习算法(OP-TENET),该算法适用于任何POMDP承认上述线性结构。此外,我们在操作装置中使用最小值优化公式,以便即使数据集较大,也可以在计算功能庄园中实现算法。第三,从理论上讲,我们证明了Op -Tenet在o(1 /ǫ2)情节中达到了最佳政策。尤其是样品复杂性在线性结构的固有维度上缩放,并且是观测和状态空间大小的独立性。第四,我们的算法和分析基于新工具。 特别是,op-tenet的样本效率是由se- 启用的第四,我们的算法和分析基于新工具。特别是,op-tenet的样本效率是由se-
在本研究中,我们解决了近似图着色的分布式计算复杂性,适用于分布式计算的 LOCAL 模型的确定性、随机性和量子版本。简而言之,设置如下:我们有一个带有 푛 个节点的输入图 퐺。每个节点都是一台计算机,每条边代表一个通信链路。计算以同步轮次进行:每个节点向其每个邻居发送一条消息,从其每个邻居接收一条消息,并更新其自身状态。在 푇 轮次之后,每个节点都必须停止并宣布自己的输出,并且输出必须形成输入图 퐺 的适当 푐 着色。如果 퐺 的色数为 휒 ,则在这种情况下,在 푇 = O(푛) 轮中很容易找到 휒 着色,因为在 O(푛) 轮中,所有节点都可以了解其自身连通分量的完整拓扑,并且它们可以通过强力在本地找到最佳着色而无需进一步通信。但关键问题是:我们能在 푇≪푛 轮中将图着色得有多好?如果我们使用可以交换量子信息的量子计算机(可能具有预共享纠缠态),这会有多大帮助?
众所周知,没有任何速率为 푅 的量子纠错码能够纠正超过 ( 1 − 푅 )/ 4 部分符号的对抗性错误。但是,如果我们只要求我们的代码能够大致恢复消息呢?在这项工作中,我们针对接近量子单例界限 ( 1 − 푅 )/ 2 的对抗性错误率构建了可有效解码的近似量子码,对于任何恒定速率 푅 。具体来说,对于每个 푅 ∈( 0 , 1 ) 和 훾 > 0,我们构造速率为 푅 、消息长度为 푘 和字母表大小为 2 푂 ( 1 / 훾 5 ) 的代码,这些代码可以有效地解码 ( 1 − 푅 − 훾 )/ 2 分数的对抗性错误,并恢复高达反指数误差 2 − Ω ( 푘 ) 的消息。在技术层面,我们使用经典的鲁棒秘密共享和量子纯度测试将近似量子误差校正减少到合适的量子列表解码概念。然后,我们通过 (i) 引入折叠量子 Reed-Solomon 码和 (ii) 应用新的量子版本距离放大来实例化我们的量子列表解码概念。
在研究来自准晶体的薛定谔算子时,人们常常通过周期晶体近似底层动力学结构来研究它。这种方法的例子可以在早期的著作中看到,例如 [ OK85 、 MDO89 、 SB90 、 TFUT91 、 TCL93 ] 和最近的 [ SJ08 、 TGB + 14 、 EAMVD15 、 TDGG15 、 CRH19 、 BBDN20 ]。这是使用具有开放、周期或扭曲边界条件的有限体积近似值来完成的,同时试图最小化边界条件的影响。在本文中,我们处理具有周期势的无限近似值,用于估计来自无限晶格 Z 上非周期原子配置的薛定谔算子。使用 Bloch-Floquet 理论可以相对容易地理解这些无限周期近似值,该理论允许我们通过具有扭曲边界条件的有限体积算子来研究它们。例如,请参阅 [ MDMPAR06 ] 或 [ SV05 ]。我们考虑的薛定谔算子是紧束缚模型的简单情况,由下式给出
量子计算机的尺寸和质量正在提高,但噪声仍然很大。误差缓解扩展了噪声设备可以有意义地执行的量子电路的大小。然而,最先进的误差缓解方法很难实现,超导量子比特设备中有限的量子比特连接将大多数应用限制在硬件的原生拓扑中。在这里,我们展示了一种基于机器学习的误差缓解技术,该技术在非平面随机正则图上具有多达 40 个节点的量子近似优化算法 (QAOA)。我们使用具有仔细的决策变量到量子比特映射的交换网络和前馈神经网络来优化多达 40 个量子比特的深度二 QAOA。我们观察到最大图的有意义的参数优化,这需要运行具有 958 个双量子比特门的量子电路。我们的论文强调了在量子近似优化中缓解样本而不仅仅是期望值的必要性。这些结果是朝着在经典模拟无法实现的规模上执行量子近似优化迈出的一步。达到这样的系统规模是正确理解 QAOA 等启发式算法的真正潜力的关键。
高能离子的非弹性能量沉积是许多工业规模应用(如溅射和离子注入)的决定性量,但其由动态多粒子过程控制的底层物理通常仅被定性地理解。最近,对单晶靶材进行的透射实验(Phys. Rev. Lett. 124, 096601 和 Phys. Rev. A 102, 062803)揭示了沿不同轨迹的低能离子(比质子重)的非弹性能量损失的复杂能量缩放。我们使用类似蒙特卡洛的二元碰撞近似代码,并配备与撞击参数相关的非弹性能量损失模型,以评估这些情况下局部贡献对电子激发的作用。我们将计算出的轨迹的角强度分布与实验结果进行了比较,其中 50 keV 4 He 和 100 keV 29 Si 离子在飞行时间装置中传输通过单晶硅 (001) 箔(标称厚度分别为 200 和 50 nm)。在这些计算中,我们采用了不同的电子能量损失模型,即轻弹丸和重弹丸的局部和非局部形式。我们发现,无论晶体相对于入射光束的排列如何,绝大多数弹丸最终都会沿着它们的轨迹被引导。然而,只有当考虑局部电子能量损失时,模拟的二维图和能量分布才会与实验结果高度一致,其中引导会显著减少停止,特别是对于较重的弹丸。我们通过评估离子范围与随机表面层厚度的非线性和非单调缩放来证明这些影响与离子注入的相关性。
摘要:癫痫是神经系统的常见疾病,及时预测癫痫发作并进行干预治疗,可以大大减少患者的意外伤害,保障患者的生命健康。本文提出了一种神经形态脉冲卷积变换器,即Spiking Conformer,用于从头皮长程脑电图(EEG)记录中检测和预测癫痫发作片段。我们报告了使用波士顿儿童医院-麻省理工学院(CHB-MIT)EEG数据集对Spiking Conformer模型的评估结果。通过利用基于脉冲的加法运算,与非脉冲模型相比,Spiking Conformer显着降低了分类计算成本。此外,我们引入了一个近似脉冲神经元层,在不牺牲准确性的情况下进一步将脉冲触发的神经元更新减少近38%。使用原始 EEG 数据作为输入,提出的 Spiking Conformer 在癫痫发作检测任务中实现了 94.9% 的平均灵敏度和 99.3% 的特异性率,在癫痫发作预测任务中实现了 96.8% 的平均灵敏度和 89.5% 的特异性率,并且与非脉冲等效模型相比,所需的操作减少了 10 倍以上。索引术语 —EEG 数据、癫痫发作检测、癫痫发作预测、脉冲神经网络、Transformer。
脉冲神经网络 (SNN) 的固有效率使其成为可穿戴健康监测的理想选择。SNN 通过事件驱动处理和稀疏激活进行操作,与传统 CNN 相比,功耗更低。这种节能方法与可穿戴设备的限制非常吻合,可确保长时间使用并最大程度地降低对用户体验的影响。另一种降低可穿戴健康监测 SNN 功耗的技术是近似计算。这种方法使资源受限的可穿戴设备能够实现计算效率,从而提高健康监测设备的使用寿命和可用性。
量子近似优化算法 (QAOA) 最初是为了在量子计算机上寻找组合优化问题的近似解而提出的。然而,该算法也引起了人们对采样目的的兴趣,因为在合理的复杂性假设下,理论上证明了算法的一层已经设计出了一种超出经典计算机模拟范围的概率分布。在这方面,最近的一项研究还表明,在通用伊辛模型中,这种全局概率分布类似于纯粹但类似热的分布,其温度取决于自旋模型的内部相关性。在这项工作中,通过对该算法的干涉解释,我们扩展了单层 QAOA 生成的本征态振幅和玻尔兹曼分布的理论推导。我们还从实际和基本角度回顾了这种行为的含义。
我们研究了两个最近的组合合同设计模型,该模型突出了合同设计中可能出现的不同复杂性的不同来源,在此校长将代价高昂的项目执行给他人。在这两种设置中,本金都无法观察代理人的选择,只有项目的结果(成功或失败),并使用合同来激励代理商,该合同是在项目成功时指定向代理商指定付款的付款计划。我们提出了解决开放问题并提高我们对两种设置计算复杂性的理解的结果。在多代理设置中,该项目被委派给了一个代理团队,每个代理商都选择是否付出努力。成功概率函数映射了施加努力为项目成功概率的任何子集。对于supporular成功概率函数的家族,Dütting等人。[2023]建立了与最佳合同的多时间常数因子近似,并且是否打开该问题是否允许PTA。我们通过表明没有多个算法可以保证比0更好的情况下回答这个问题。7-最佳合同。对于XOS函数,它们给出了带有值和需求查询的多时间常数近似值。我们仅使用值查询,就无法获得任何常数近似。在多进取设置中,该项目被委派给单个代理,后者可以采取一组措施的任何子集。在这里,成功概率函数将任何子集映射到了项目成功的概率。Dütting等。[2021a]显示了一种用于计算总替代替代概率函数的最佳合同的多时间算法,并表明该问题对于下函数函数是NP-HARD。我们通过表明该问题不承认任何恒定因子近似来进一步增强这种硬度结果。此外,对于更广泛的XOS函数,我们建立了获得任何ε> 0的n -1/2+ε-approximation的硬度。< / div>