空间态势感知 (SSA),有时也称为空间领域感知 (SDA),可以理解为对特定区域内所有物体的全面了解的总结性术语,而不必与这些物体直接通信。空间交通管理 (STM) 作为一个外推术语,正在应用 SSA 知识来管理该区域以实现可持续利用。这三个术语传统上都适用于近地空间领域,通常从低地球轨道 (LEO) 扩展到超地球静止轨道 (hyper-GEO),感兴趣的物体是轨道运动中的物体,其主要天体动力学项是地球的中心引力势。空间交通管理 (STM) 旨在设计解决方案、方法和协议,以便以一种可持续利用空间的方式管理空间整流罩。因此,SSA 和 SDA 为 STM 提供了知识基础,这些领域紧密交织在一起。
轨道碎片是指任何绕地球运行的人造太空物体,不再具有任何有用的用途 [1]。轨道碎片对所有太空任务都构成威胁,包括情报界 (IC) 的任务。低地球轨道 (LEO) 的平均撞击速度为 22,500 MPH,即使是最小的碎片也会造成严重损害,0.2 毫米的油漆碎片撞击 STS-71 时产生的直径为 3.8 毫米的坑洞就是明证 [2]。目前,有超过 1 亿个大于 1 毫米的物体绕地球运行,[3, 4] 但据估计,目前追踪到的可能造成任务终止损害的碎片不到 1% [5]。此外,由于近地空间环境的动态和多变性,预测碎片的轨迹极其困难,需要持续监测 [6]。虽然目前可以探测和追踪大于 10 厘米的碎片,但目前的能力不足以追踪较小的碎片 [7]。太小而无法追踪的碎片通常被称为“致命的不可追踪碎片”(LNT),[8] 会对航天器造成严重损害,甚至危及太空任务。探测、跟踪和表征 LNT 碎片将有助于全球宝贵太空资产的更安全运行 [9]。
人类探索和开发近地空间已有六十多年。最近二十年,我们迎来了新太空时代——由于进入门槛大幅降低,当前的太空活动全球化、多样化、快速扩张——其特点是航天国家和公司增多、碰撞风险增加、冲突风险不断增加。1 然而,50 年前为管理太空活动而制定的基本条约和机制只发生了微小的变化。要求在太空治理和“负责任”太空行为方面取得更多进展的呼声越来越高,而且来自越来越多的群体。2 为了帮助解决当前太空治理与未来需求之间存在的差距问题,本展望对改进负责任太空行为的必要性进行了初步评估,简要描述了一些主要进展障碍,并就如何进行改进提出了初步建议,重点关注最需要关注和最有可能使所有人受益的领域。本展望旨在为缺乏深空专业知识但有权影响其国家或太空部门未来太空政策的全球政策制定者提供信息。本展望还旨在开始规划路线
当应用于地月轨道模式时,利用经典的地面和/或太空传感器在近地空间执行空间领域感知 (SDA) 变得越来越困难。因此,地月周期轨道被提出作为填补这一能力空白的一种手段。虽然周期轨道有许多用途,但这项工作评估了各种地月周期轨道在样本 SDA 任务架构中的有效性。具体而言,对地月空间内几种不同类型的周期轨道进行了建模,以评估它们在跟踪/监视围绕 L1 拉格朗日点的 Lyapunov 轨道上均匀分布的两颗假想卫星方面的各自有效性。所分析的轨道是在圆形限制三体问题 (CR3BP) 中建模的。还介绍了在过渡到双圆限制四体问题 (BCR4BP) 时保持相同轨迹所需的推进剂。为了比较从 CR3BP 过渡到 BCR4BP 等更高保真度模型时的轨道维护成本,我们寻求实施多种动力学模型。概念性空间对空间传感器用于确定 SDA 任务周期轨道几何的限制,该限制与范围、能力和太阳/地球/月球排斥角有关。视觉星等用于确定目标是否可见。结果列表与地月 SDA 最有效周期轨道的建议一起呈现。
Eric Donovan 是卡尔加里大学的物理学和天文学教授。他的研究重点是空间物理学。更具体地说,Eric 开发、部署和运营成像仪网络,用于遥感加拿大大部分地区的极光。他的目标是探索地球磁层中发生的等离子体物理过程,这些过程一方面导致极光,另一方面塑造近地空间环境。他是五个成功 CFI 应用程序的 PI,并共同领导 NASA THEMIS 任务的极光成像部分。从 2016 年到 2018 年,Eric 担任科学学院副院长研究。作为 ADR,他领导了一个咨询过程,以四大挑战和三个研究平台的形式确定了学院的研究战略。此外,作为 ADR,他对小型和大型研究项目的需求有了更深的了解。 2011 年,他领导了学院空间科学研究重点的开发,2015 年至 2017 年,他共同领导了卡尔加里大学学院新地球空间技术优先研究主题的创建。他是唯一一位担任 2013 年至 2015 年担任美国国家科学基金会资助的地球空间环境建模项目科学指导委员会主席的非美国研究人员,该项目已有 30 年历史,目前担任加拿大航天局太阳地球科学咨询委员会委员。
近地空间环境是一种有限的共享资源。发射成本降低、电子设备小型化和对弹性、分解架构的偏好等趋势正在推动轨道人口的大幅增长。现有的协调和管理太空交通的系统无法扩展到这种更高的利用率,也无法促进太空的有效和公平利用。人们越来越需要新的技术太空交通管理 (STM) 系统和政策制度来协调前往、在太空和从太空返回的活动。本论文介绍了开发这一综合语料库的几项贡献。对拟议的 STM 架构的文献综述突出了对新兴太空国家 STM 观点和商业运营商对数据共享的态度的理解方面的差距。根据联合国文件和对新兴太空国家代表的采访,为未来的国际 STM 发展工作制定了四项建议。这些建议强调可负担性、可实现的参与技术要求、包容性的系统设计以及对卫星控制分配的仔细考虑。通过审查运营商的美国监管文件以及对运营商和专家的新采访,运营商的态度依次通过以下几个方面进行追踪:1) 潜在的 STM 领域和功能;2) 每个功能的数据要求;3) 对数据共享的担忧;4) 对数据保护机制的态度;以及 5) 对潜在 STM 系统设计的影响。关键见解包括运营商认为数据共享带来的自身利益的重要性,以及运营商数据共享态度的显著差异。
主题代码:PH-xxx 课程名称:自旋电子技术简介 LTP:3-0-0 学分:3 主题领域:OEC 大纲:磁学基础知识:磁学类型、自旋轨道相互作用、偶极相互作用、交换相互作用、磁各向异性 自旋相关传输:异常霍尔效应、各向异性磁阻 (AMR)、巨磁阻 (GMR)、隧道磁阻 (TMR)、自旋阀 (SV)、磁隧道结 (MTJ)、磁场传感器(硬盘读取头、生物传感器) 磁化动力学:自旋转移扭矩 (STT)、自旋霍尔效应 (SHE)、自旋轨道扭矩 (SOT)、轨道霍尔效应 (OHE)、磁化切换、磁性 skyrmions 自旋电子器件:磁阻随机存取存储器 (MRAM) 技术 - STT-MRAM、SOT-MRAM、自旋扭矩和自旋霍尔纳米振荡器(STNO 和 SHNO)、自旋量热器、赛道存储器基于自旋的计算:纳米磁逻辑、自旋逻辑、基于振荡器的神经形态计算、自旋波计算。科目代码:PH-xxx 课程名称:太空探索 LTP:3-0-0 学分:3 学科领域:OEC 大纲:不同国家太空探索的历史、对太空技术的需求、对空间科学知识的需求、近地空间的等离子体、大气中的波、其他行星的大气/电离层、空间测量:主动和被动遥感和现场测量、轨道:开普勒行星运动定律、轨道类型、霍曼转移轨道、卫星通信和导航、空间技术的应用。
地球轨道上的空间物体总数估计超过 20 万个,而目前不断跟踪和编目的空间物体数量约为 2 万个。在我们这个时代,太空交通量每年都在增加,因此可能发生碰撞的风险也随之增加,全球都需要控制近地空间环境,特别是低地球轨道。这是每个北约国家的共同问题,可以通过各国之间的全球合作来解决。此外,与轨道物体测量位置相关的不确定性是影响性能、准确性和及时性的主要因素之一。因此,旨在协调大量传感器是该领域最重要的方面之一。本文提出了一种算法来估计全球分布的光学资产网络(望远镜和探测器)的性能,该网络使用现成的望远镜组件,部署在不同位置的多个站点。在探测尺寸小至 3 厘米的太空物体的情况下,定量性能指标计算为网络在给定时间窗口内可见的总分类碎片比例(在我们的例子中,已考虑 24 小时)。所提出的算法将所有 NORAD 目录、DISCOS 目录提供的所有物体物理数据以及所有光学和大气数据作为输入。然后,它会传播空间物体群,以获得它们在选定时间窗口内的位置,过滤掉所有不在地面站网络视线范围内足够时间的物体,以保证可行的轨道确定,并对满足所有先前条件的物体估计光学资产可实现的信噪比。这些值直接转化为检测概率,从而为给定的地面传感器网络配置提供性能指数,可用作评估不同架构时要优化的目标函数。
为了满足我们技术社会的需求,近地空间的卫星数量正在迅速增加。这些卫星预计将在受到强烈粒子辐射的轰击时持续运行,这些辐射可能会损坏电子元件,导致暂时故障、性能下降或整个系统/任务失败。我们尽一切努力设计能够承受恶劣环境的卫星,但在轨道上仍然会出现问题。当出现问题时,有必要找出原因,以便采取适当的措施保护资产并恢复正常运行。然而,诊断与空间天气相关的异常具有挑战性,因为它需要广泛的环境信息、工程知识和专业知识。我们的目标是通过提供将所有必要组件整合在一起并简化最终用户的分析过程的工具来实现有效的异常分析和归因。在这里,我们讨论了我们为构建全面的卫星异常归因工具所做的努力。我们介绍了一些正在进行的项目,包括开发高能电子辐射带模型 (SHELLS)、卫星充电评估工具 (SatCAT) 和太阳质子访问模型 (SPAM)。 SHELLS 电子辐射带模型使用神经网络来绘制从低空到高空填充内磁层的实时高能电子通量。一旦建立了映射,就可以仅使用近乎实时的 POES/MetOp 数据来指定过去和未来的高能电子通量。SatCAT 工具是一个在线系统,允许用户创建在轨卫星当前和历史内部充电水平的时间线,以便与异常时间进行比较。该工具是可配置的,允许用户生成和查看其卫星的内部充电水平以及设计参数,例如屏蔽厚度和材料。最后,太阳质子接入模型 (SPAM) 使用低空 POES/MetOp 测量来绘制整个磁层的太阳质子通量。