医疗标准目录 (MSD) 本文件反映了美国空军的留用、飞行课程和特殊作战任务的现行医疗标准。这些是 DAFMAN 48-123 中引用的标准,并由医疗标准工作组每年(至少)审查一次。空军医疗准备局的医疗标准制定主管是 MAJCOM/SGP 的任何更新联系人。如果服役人员不符合适用的医疗标准,请参阅 DAFMAN 48-123 了解空军所需的行动。要引用医疗标准,请使用“MSD、MSD 日期、部分行”。例如,在叙述摘要中引用乳糜泻时,请使用“MSD,2021 年 2 月 10 日,I51”。当 MSD 中的一行被删除时,它将保留在 MSD 中,并有一行划掉,表示该标准在 1 年内不再存在。1 年后,该行将被删除。删除的项目将保留在 KX 上的文档中,以供现场查看历史视角,但该标准将不再适用。对 2021 年 2 月 10 日 MSD 的更改以黄色突出显示。A2 仅更改为 IFCI/IA。A35 注释已更改,以反映 ADHD 不受 I-RILO 约束。A2 澄清。N18 删除。第 I 节 1-6 完全返工。第 V 节增加了对特定处方药的说明。第 C 节,视力标准澄清和更新的扩张药物。第 T 节:扩展的 CEA 站立高度标准。第 S 节为 SWA 和其他服务学校的摘要
修订版 A 2016-06-30 - 将 8739.1、8739.4 和 8739.5 中的所有通用要求移至此标准。添加了相关文档、定义和首字母缩略词。- 将 7120.8 和“不伤害”使命从工艺要求中豁免。- 更新/更正有毒和有害物质引用的 CFR。- 删除了文本中不再使用的文档、定义和首字母缩略词。- 更正了安全数据表的首字母缩略词和名称。- 添加了替代标准、制造文档、现成产品、裁判放大级别、供应商的定义。- 提供了有关实验室温度和相对湿度条件的澄清语言。- 引用了项目校准控制要求,而不是在工艺标准中定义它们。- 澄清了所有任务硬件工艺都应接受检查。- 澄清了批准非标准溶剂所用的标准。- 禁止在使用镀银铜线的应用中使用水作为清洁溶剂。- 使用 NASA-STD-8709.22 中的标准定义进行返工和维修。- 在 ESD 控制区域经常遇到低湿度工作条件时,风险缓解可能是标准做法。- 禁止使用“防静电”容器(例如粉红色聚乙烯)来储存或运输 ESD 敏感物品。- J-STD-001F 的第 11 条不适用于聚合物应用。- 免除 J-STD-001FS 中的红色瘟疫控制计划要求。- 删除与 J-STD-001FS 的 IPC 非模块化培训计划相关的要求和信息。- 从自定义 J-STD-001FS 培训计划的用户中删除 B 级培训师。- 当 NASA-STD-8739.4 引用时,允许使用 J-STD-001FS 代替 NASA-STD-8739.3。- 删除操作员、检查员和 B 级培训师的认证要求。- 删除再培训要求附带的三个月宽限期。- 禁止与外国学生分享出口行政法规 (EAR) 信息。
铅免费焊接和环境合规性:供应链准备和挑战Dongkai Shangguan flextronics摘要供应链准备和兼容性对于平稳过渡到全球电子行业的环境合规性至关重要。本文回顾了无铅销售和ROHS合规性,供应链准备,关键兼容性问题和未来挑战的状态。领先的免费解决方案带有免费的免费焊料合金,现在已经花费了将近15年的时间来开发免费的铅焊料解决方案。自然,努力始于寻找无铅焊料合金。该行业终于融合了SN-AG-CU(SAC)合金;但是,尚不清楚这是否是对单个合金组成的强大收敛,还是具有各种组成和修饰的弱收敛性。如果可以依靠历史在这方面提供任何指导,那么在西方世界中,在远东地区有更多品种的统一性。由于其关键特征的绝对相似性,因此预计SAC周围的这些变化和修改不会需要显着不同的焊接过程和基础设施。知识基础设施该行业在建立知识基础设施方面取得了重大进展,以支持潜在的免费解决方案,包括焊料材料需求,组件要求,PCB(印刷电路板)层压材料和表面表面处理要求,包括SMT(表面上的技术),波浪焊接和重新制作的型板形式和复杂性。in铅免费焊接过程的资格已成为渗透无铅知识和全球工厂能力的有效工具。组件的组件内部材料必须满足ROHS要求。就终止冶金剂而言,对于被动组件,Matte SN Plating已与SN-PB焊料一起使用了很多年,并且也可以与无铅焊料一起使用。对于铅组件,只要可以有效地管理SN Whisker风险,就可以与无铅焊料(“向前兼容”)一起使用Matte SN或SN合金的电镀。ni/pd已与SN-PB焊料一起使用了多年,而Ni/PD/AU目前是铅型组件的替代品,用于铅免费焊接。带有SAC球的区域阵列套件与SAC焊料效果很好。用于回流焊接,假设最低峰值温度为235 o C,最高温度取决于整个电池的温度三角洲,这又取决于板的尺寸,厚度,层计数,布局计数,CU分布,组件尺寸和热质量,烤箱的热质量,烤箱的热容量,以及某些不可循环的过程变异和测量耐受性。大型厚板,带有大型复杂组件(例如CBGA,CCGA等)通常具有高达20-25 o的温度三角洲。返工是另一个有助于组件温度升高的过程。考虑到所有应用要求时,长期以来一直提出了260 o C峰值温度作为铅无铅焊接所需的温度。根据组件的体积和厚度以及过程条件(例如返工),在IPC/JEDEC标准020中捕获了要求(包括焊接峰值温度和公差)。应注意,实际的组件体温可能与板上测得的温度不同,并且不同的组件可能具有不同的温度,具体取决于板上的组件热特性和位置。PCB较高的无铅焊接温度列出了PCB的可靠性问题,例如变色,经线,分层,起泡,垫子提升,CAF,CAF(导电阳极丝),CU桶和箔纸的破裂以及互连分离等焊接过程后,其中一些问题很明显,而其他问题可能会导致潜在的失败。pth(通过孔进行镀板)可靠性可能会受到无铅焊接的不利影响,具体取决于PCB的厚度,层压材料,焊接轮廓和CU分布,通过几何形状和Cu Plating厚度等。
1. 简介 材料 4.0 的目标和目的是实现材料领域以数据为中心的数字化创新、特性描述和制造,这与其他工业领域的目标相同;特别是汽车、航空航天、建筑、石油和天然气、化工厂、切削工具以及最近的核能。工程和制造业的数字化程度不断提高,为加工、采购、设计、测试、服务、回收和再利用创造了新的机遇和需求。然而,每个工程软件系统都有其独特的内部方法来表示它所处理的数据,因此这些数字产品信息不能被具有不同内部表示的其他系统直接理解和处理。不同软件系统之间传输的工程数据的数字表示不兼容,会导致延误、返工和失去机会而产生的额外成本。避免和减轻这些成本需要确保消息内容的数字表示能够被接收软件系统理解和使用。此外,许多产品的寿命通常比工程软件系统的寿命长。因此,还有一个额外的要求,即确保数字产品数据以计算机可理解的形式保留,即使原始系统过时或不再可用多年,也应如此,从而避免遗留数据问题日益严重。过去三十年来,全球合作已经达成共识,通过使用国际标准来管理上述工业部门相关工程数据的数字化表示。这些标准为工程数据的数字表示提供了规范,这种表示形式可以捕捉数据所代表的信息的语义,并且独立于专有软件。这些标准描述的技术是完善可靠的,可以放心采用,以实现材料 4.0 的一些目标。本报告概述了这种方法的好处,并总结了不采用战略和技术方法实现互操作性的一些成本。报告描述了这项全球技术的主要特点,并提出了可以采用的研究、教育和培训活动的路线图,以实现材料 4.0 的目标。
摘要 资产是对组织具有实际或潜在价值的任何事物。资产的运营需要花钱,其绩效应该是可衡量的,因此资产可以是大学建筑、办公楼、会议室、电梯或空调机组。建筑环境内的可持续性应贯穿资产的整个生命周期 - 从设计和建造 (D&B) 阶段到运营阶段,并将见解反馈到 D&B/翻新或退役阶段。在整个生命周期资产管理中,全面、循环的端到端可持续性方法应涵盖以下关键领域:(i) 使用基于证据的数据仅建造/翻新所需的部分;(ii) 减少浪费、库存、返工、不必要的资源投入和能源消耗;(iii) 使用合适的供应商、产品和材料,仅在需要时订购和使用零件 - 确保在合适的时间从首选供应商处获得合适的零件; (iv) 衡量、优化和最大化现有资产绩效并展示“适合用途”;(v) 提高合规性、健康和安全以及福祉。为了实现这些目标,组织需要协作,以确保整个生命周期资产管理方法中的各个解决方案和服务是开放的、可互操作的(非专有的)、模块化的,可以根据客户需求进行定制,同时保持成本效益并能够实现期望的业务成果,包括可持续性日益增长的重要性。我们提出的智能企业资产管理生态系统汇集了涵盖物联网、资产管理(CMMS、CAFM)、3D 扫描和 BIM、数字孪生、电子采购和供应链、大数据分析、区块链等创新技术的合作伙伴,所有这些都以行业专业知识和学术严谨性为基础。这种独特的合作伙伴协作广度和深度专注于端到端资产全生命周期管理,有助于消除最终客户的孤岛和障碍,从而使他们能够实现所需的业务成果,例如能源可持续性、性能、成本降低、福祉等,而不是让他们陷入系统和技术架构的泥潭中而迷失方向。
计算机视觉如何彻底改变传统的木工技术?该研讨会的重点是通过增强木工(AC)在木材建设中的计算机视觉援助技术的整合,这是一项由EPFL IBOIS开发的开放源代码研究项目(PhD:Settimi Andrea,论文联合主任:Julien Gamerro,论文和实验室主任:Yves Weinand教授Julien Gamerro博士)。参与者将对计算机视觉如何彻底改变传统木工技术的基本理解,从而导致木材建设中更高效,更可访问的数字制造。1。木材建筑参与者的计算机视觉援助简介将从介绍计算机视觉在木材构造中的作用。我们将探索诸如增强现实(AR),机器学习和3D计算机视觉之类的技术如何增强设计过程,减少施工错误并优化材料的使用。参与者将学习增强的工作环境如何帮助可视化施工计划,监控实时进度并提高精度,减少浪费和返工。2。增强木工的解剖结构本节将重点介绍AC及其技术的核心原则。参与者将了解AR辅助木工所需的硬件和软件,例如AR接口,实时反馈系统,软件体系结构和传感器。我们将讨论这些工具如何将数字设计转化为精确的物理结构,并提供提高制造效率和质量的反馈。3。重点将是了解AC如何将普通的电动工具整合到新的数字流程中,从而促进更具弹性和可持续的生产方法。与增强木工的动手会议将是研讨会的亮点。通过实时与数字叠加层和交流工具进行交互,参与者将体验到AC简化制造任务,改善空间理解并为精确调整提供实时反馈。这种沉浸式的体验将加深参与者对增强木工如何影响木材建设中的数字制造的理解。参与者将同时了解木材建设中最先进的增强现实应用的理论和实践知识。
航空职业 A-Z 航空工程师:他或她开发、设计和测试飞机、导弹、卫星和其他系统。空运代理:此人的工作是监督货运站、记录空运货物并安排交货。空运/行李处理员:他或她装卸货物和行李、驾驶行李牵引车并操作传送带、叉车和其他空运处理设备。飞机装配工:他或她组装、装配和安装预制部件以制造固定翼或旋翼飞机或飞机子组件。飞机装配检查员检查飞机组件是否符合工程规范。他们受雇于飞机和飞机子组件制造商。这也可能包括制造飞机上的所有部件。飞机复合结构工人:随着石墨和凯夫拉纤维等现代飞机材料技术的进步,这一行业已成为一项非常有趣且具有挑战性的行业。该行业的技术人员负责维护、修理和制造塑料、玻璃纤维和蜂窝结构部件,例如飞行控制装置(襟翼、扰流板、升降舵)、机头雷达罩和各种其他蜂窝结构部件。培训包括:玻璃纤维蒙皮修复。金属蒙皮修复。飞机窗户返工。热焊修复。飞机电镀工:该行业需要通过电化学过程在飞机零件上镀上一层薄保护层。各种金属都经过电镀,例如铬、镍、银、铅锡、铜、镉。这些金属用于防腐蚀,并将磨损的部件重建为原始标准和尺寸。他们还使用特殊工艺对铝和镁进行防腐蚀处理。培训包括以下内容:实验室分析,因为所有电镀溶液均在我们自己的设施中制备和测试。电化学和电学原理。不同金属的表面处理。飞机维修工程师 (AME):他或她诊断、调整、维修、更换或大修飞机发动机和组件,例如液压和气动系统、机翼和机身,以及功能部件(包括索具、表面控制和管道),以确保适航性。该职业领域包括以下内容:飞机电工:任何现代飞机的令人满意的性能在很大程度上取决于所有电气和系统的持续可靠性。飞机电工必须能够诊断电气系统的故障,进行定期检查,维护、维修和检修所有电气系统
OEM(原始设备制造商)/OCM(原始组件制造商)是指生产其从购买的组件设计的产品并根据公司的品牌名称出售这些产品的公司。流程:用于生产合同所描述的材料的制造和软件开发过程,除特殊和专有过程外。合同中将指定软件开发过程评估的范围。采购文件:采购订单或分包合同,是针对所购买材料的合法合同,指定具有定义要求的条款和条件。随后将被称为p.o。产品:所有以TAES购买的原材料,散装材料,零件,子组件,单位,软件,固件和服务。返工:可以使用文章符合图形要求时使用。必须包括或引用详细说明。维修:当不合格的文章,材料或服务可以纠正到可用条件时使用,尽管其条件与绘图 /规格要求不相同。供应商应确保不符合产品要求的产品得到确定和控制,以防止其意外使用或交付。应在记录的程序中定义处理不合格产品的控件和相关责任。供应商的记录程序应定义对处置不合格产品的审查和权力的责任,以及批准做出这些决定的人员的过程。软件产品:一组完整的计算机程序,软件媒体,过程以及相关的文档以及指定向用户交付的数据。软件服务:与软件产品相关的活动,工作或职责的性能,例如其开发,维护和操作。特殊过程:化学,冶金,键合,印刷电路板(PCB/PWB)的过程,生物学,声音,电子或放射线学性质,在某种程度上,该特性在某种程度上被认为是重要的,专业的设备,程序,人员培训,材料,材料和/或设备和设备和设备和确认或校准控制或校准控制。请参阅特定P.O.所调用的“特殊过程供应商质量要求”。合同中的质量条款规定。政府:是指美国政府。供应商/卖方:TAE购买的任何产品或服务来源,也被称为供应商。供应商:请参阅供应商的定义。豁免:供应商使用的一种表格,要求从TAES索取授权到非 -
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
固体钽电容器广泛用于太空应用,以过滤电源电路中的低频纹波电流并稳定系统中的直流电压。根据军用规格 (MIL-PRF-55365) 制造的钽电容器是可靠的元件,D 级或 S 级每 1000 小时的故障率低于 0.001%(故障率低于 10 FIT),因此这些部件属于可靠性最高的电子元件。尽管如此,钽电容器确实会发生故障,一旦发生,可能会对系统造成灾难性的后果。这是由于短路故障模式,可能会损坏电源,也是由于在低阻抗应用中发生故障时,带有锰阴极的钽电容器具有自燃能力。在此类故障中,钽颗粒与过热的氧化锰阴极产生的氧气发生放热反应,释放出大量能量,不仅会损坏部件,还会损坏电路板和周围元件。与陶瓷部件相比,钽电容器的一个特点是电容值相对较大,在当代小尺寸芯片电容器中电容值达到数十和数百微法拉。这可能会导致电路板首次通电时部件出现所谓的浪涌电流或开启故障。这种故障被认为是钽电容器中最常见的故障类型 [1],是由于电路中电压 dV/dt 的快速变化,在电路中电流不受限制时产生高浪涌电流尖峰,I sp = C×dV/dt。这些尖峰电流可以达到数百安培,并导致系统发生灾难性故障。浪涌电流故障的机理尚未完全了解,相关文献中讨论了不同的假设。其中包括持续闪烁击穿模型 [1-3];电感相对较高的电路中的电振荡 [4-6];阴极局部过热 [5, 7, 8];MnO 2 晶体撞击导致的五氧化二钽电介质机械损伤 [2, 9, 10];或电流尖峰期间产生的电磁力引起的应力诱导电子陷阱生成 [11]。然而,我们的数据显示闪烁击穿电压明显高于浪涌电流击穿电压,因此仍不清楚为什么没有闪烁的部件在浪涌电流测试 (SCT) 期间会在相同电压下失效。关于浪涌电流故障的一个普遍接受的解释是,在浪涌电流条件下,如果电流供应不受限制,钽电容器中的自愈机制不起作用,如果电流受到限制,那么本来会是一个轻微的闪烁尖峰,但到了部件上就会变成灾难性的故障 [1, 12]。电子元件(尤其是钽电容器)的使用风险可以定义为故障概率和后果(例如,表示为返工、重新测试、重新设计、项目延误等成本)的乘积。在这方面,钽电容器可以被视为具有高应用风险的低故障率部件。为了降低这种风险,有必要进一步开发筛选和鉴定系统,特别注意现有程序中可能存在的缺陷。