用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。
人工智能在土木/建筑/建筑工程教育中的应用 Mohammed E. Haque 建筑科学系 德克萨斯 A&M 大学 Vikram Karandikar 建筑科学系 德克萨斯 A&M 大学 摘要 对于某些科学和工程教育领域来说,超越传统的院系课程界限变得越来越重要。人工智能 (AI) 就是这样一个领域;它的应用非常广泛且跨学科。应特别鼓励研究生学习当代计算技术的各种应用,包括人工神经网络 (ANN)、遗传算法 (GA) 等。土木/建筑/建筑工程对神经启发计算技术的应用兴趣日益浓厚。这种兴趣的动机是某些信息处理特性与人脑相似。软计算 (SC) 是一种新兴的计算方法,它与人类思维在确定性和精确性的环境中推理和学习的非凡能力相似。本文重点介绍了人工智能在土木/建筑/建筑工程尤其是 SC 领域的各种应用。作为毕业项目的一个例子,本文展示了一个基于 ANN 和 GA 的知识模型,其中研究了客户对大型多层公寓住宅方案的舒适性和安全性问题的偏好。建筑/工程是一门应用科学,可以从现有结构及其成功和失败中吸取许多教训,并将它们结合起来以找出更好的结构的新技术。这意味着设计师应该能够从每个以前的设计中得出一些定性值,特别是用户对建筑安全性和舒适度质量的认可,以确保设计成功。建筑师/设计工程师经常面临软数据的挑战,这些数据本质上是语言定性的,需要解释并融入他们的设计决策过程。他们应该非常了解客户的愿望和要求,尤其是客户在具体设计问题上的偏好。因此,后期