摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
a Université Paris, CEA, 91191 GF-SUR-YVETTE, France B Nuclear Energy Agency, 46 quai A. Le Gallo, 92100, Boulogne Billancourt,france c Paul Scherrer Institute, Ch-5232 Villgenry 83415, USA E CIEMAT, Avenida Complutense 22, 28020 Madrid, Spain F Kit, Institute for Pulsed Power and Microwovetechnology, Hermann-Von-helmholtz-platz 1, germanpenstein-leofen, 545, USA H University of Oxford, Department of Materials, Parks Road, Oxford Ox1 3PH, United Kingdom I Jaea, 4002, Narita-cho, Oarai-Machi, gigashi-ibaraki-gun, Ibaraki-ken, Japan J Ocas Center, Institute of Nuclear Materials Science, Boeretang 200, 2400 MOL, Belgium L School of Physics, Pekking University, Beijing, China
图 1:制造带有水凝胶涂层的线圈支撑血管移植物。A) 通过初始电纺层制造电纺套管,然后使用定制溶液打印机进行线圈沉积,最后形成最终电纺层。使用四氢呋喃进行溶剂蒸汽焊接两小时,以提高构造完整性。B) 通过扩散介导的氧化还原引发 PEUDAm 第一网络交联对电纺移植物进行水凝胶涂层,从而确定水凝胶涂层的厚度。然后,NAGA、bisAAm 和光引发剂膨胀到第一网络中,并通过光引发固化,形成最终的互穿网络水凝胶涂层。
• Bypass capacitor placement – Place near the positive supply terminal of the device – Provide an electrically short ground return path – Use wide traces to minimize impedance – Keep the device, capacitors, and traces on the same side of the board whenever possible • Signal trace geometry – 8mil to 12mil trace width – Lengths less than 12cm to minimize transmission line effects – Avoid 90° corners for signal traces – Use an unbroken ground plane在信号迹线下方 - 带有地面的信号迹线周围的洪水填充区域 - 对于超过12厘米的迹线•使用阻抗控制的迹线•源 - 端端使用输出附近的串联阻尼电阻器•避免分支;缓冲信号必须单独分支
共识规范和标准 (C+S) 在核设施的标准化、安全性和快速制造中发挥着关键作用。国会指示联邦机构尽可能使用 C+S,3 而 NRC 在开发和使用用于运行反应堆的 C+S 方面有着悠久的历史。最近,NRC 审查并在监管指南中认可了 ASME 第 III 条第 5 部分。监管指南中的认可是一种新颖的方法;工作人员认识到,他们和行业都需要灵活性,因为他们是第一次使用规范的这一部分。在考虑其他创新制造和建造技术时,工作人员应继续采取灵活的态度。与此相关的是,工作人员应利用这个机会考虑如何更好地与 SDO 合作,包括及时审查和认可 C+S。
实施 ADVANCE 法案是 NRC 的首要任务,NRC 正在继续努力为核能项目的先进制造和建设提供监管清晰度和可预测性。在制定本报告时,NRC 考虑了为解决 ADVANCE 法案第 401 节中规定的主题而采取的行动,例如 2020 年发布的先进制造技术行动计划,该计划反映了该机构当时对这一不断发展的领域的准备和理解的承诺(参考文献 1)。本报告以已采取的行动和正在进行的行动为基础,进一步确定了解决这些问题的潜在未来行动。这些行动概述在本报告的附件 1 中。根据 NRC 的监管需求、技术发展和利益相关者的利益(并取决于资源可用性和优先顺序),将探讨潜在的未来行动(附件 1,表 3)。
ICAM 2025 为赞助商提供了前所未有的机会,让他们能够接触来自行业、学术界和监管机构的众多 AM 专业人士、领导者和影响者。会前宣传、展览空间、社交活动和其他机会将使赞助商能够在整个活动期间与与会者建立联系。
如果 AMHC 项目正在部署现有的先进制造技术(即在加拿大或国外购买的技术)或重复部署以前开发的技术,则该项目将获得行业合作伙伴产生的合格项目费用的 33% 的补偿。如果项目正在通过此提案开发新的先进制造工艺/技术,则补偿率将增加合格项目总成本的 3%。如果项目能够证明对经济适用房开发或社会住房开发产生直接、积极的影响,则其补偿率将增加合格项目总成本的 5%。为避免疑问,如果项目既包括先进制造开发活动,又包括经济适用房/社会住房影响,则最高潜在补偿率为 38%。
本文涉及到有限序列的周期性序列,其元素是从有限字母的属性中绘制出的,该特性对于正整数n(阶)(阶)的任何子序列(n-元组)的任何子序列仅在一个时期出现一次。此类序列的一个重要的极端类是de bruijn序列 - 例如,请参见[10,20]。这些序列有时被称为移位寄存器序列(请参见Golomb,[12]),已经进行了广泛的研究,并具有一系列应用,包括在编码和加密中。这里特定相关性的一种应用是位置位置。这涉及将这样一个序列编码到线性表面上,该序列仅通过检查序列的连续n个连续条目就可以在表面上的任何位置进行编码(例如,参见burns和Mitchell [4,5]和Petriu [18])。有关位置序列使用序列的最新工作包括B Chris J. Mitchell me@chrismitchell.net
2024年11月29日,英国格拉斯哥大学詹姆斯瓦特工程学院复合材料与先进制造学教授Shanmugam Kumar博士为PSGIAS的学者和教师发表了演讲,并参观了PSGIAS实验室,讨论了未来的合作研究项目。
