近期,基于神经网络的强化学习 (RLNN) 在许多问题上显示出了巨大的潜力,包括量子信息论中的一些问题。在这项工作中,我们将 RLNN 应用于量子假设检验,并确定区分多个量子态 { ρ j } 的最佳测量策略,同时最小化错误概率。在候选状态对应于具有许多量子比特子系统的量子系统的情况下,对整个系统实施最佳测量在实验上是不可行的。我们使用 RLNN 来寻找实验上可行的局部自适应测量策略,其中每轮只测量一个量子子系统。我们提供了数值结果,表明 RLNN 成功找到了最佳局部方法,即使对于多达 20 个子系统的候选状态也是如此。我们还证明,RLNN 策略在每次随机试验中都达到或超过了改进的局部贪婪方法的成功概率。虽然使用 RLNN 设计自适应局部测量策略非常成功,但一般来说,最佳局部自适应测量策略和最佳集体测量的成功概率之间可能存在显著差距。我们基于以前的工作,提供了一组必要和充分条件,使集体协议严格优于局部自适应协议。我们还提供了一个新的例子,据我们所知,它是最简单的已知状态集,显示出局部和集体协议之间存在显著差距。这一结果提出了关于理论上最优测量策略和实际可实施测量策略之间差距的有趣新问题。
RNase T1 是一种来源于米曲霉 (Aspergillus oryzae) 的核糖核 酸内切酶,可特异性地在单链 RNA 的鸟嘌呤核糖核苷酸 (G) 后进行 切割,产生 3' 磷酸末端。 RNase T1 能够形成核苷 2' , 3'- 环磷酸中 间体,以切割 3'- 鸟苷残基与邻近核苷 5'-OH 基团之间的磷酸二酯键, 产生含末端 3'-GMP 的寡核苷酸和 3'-GMP 。
图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
2019年更新:持续对基础AI研究进行长期投资 ............................................................................................. 7 推进以数据为中心的知识发现方法 .................................................................................................................................. 9 增强AI系统的感知能力 .................................................................................................................................................... 9 了解AI的理论能力和局限性 ............................................................................................................................................ 10 开展通用人工智能研究 .................................................................................................................................................. 10 开发可扩展的AI系统 ........................................................................................................................................................ 11 促进人类AI的研究 ............................................................................................................................................................ 11 开发更强大,更可靠的机器人 ...................................................................................................................................... 11 推进硬件以改进AI ............................................................................................................................................................ 12 创建AI以改进硬件 ................................................................................
1. The 8th International Conference on Power Electronics ( IPEMC 2016-ECCE Asia ) 2. The 43rd Annual Conference of the IEEE Industrial Electronics Society ( IECON2017 ) 3. The 10th Annual IEEE Energy Conversion Congress and Exposition (ECCE 2018) 4. IEEE International Power Electronics and Application Conference and Exposition (PEAC2018) 5. Research, Demonstration and Commercialisation of DC microgrid Technologies (RDC2MT ) 6. 顾永文、马鸿泰等 6 位研究生进行三个月以上的短期访学
连。这些关系可以是“is_a”或“part_of”,形成了一个有向无环图(DAG)的结构。 GO注释是将基因产 物与GO术语相关联的过程,这对于理解基因的功能和进行基因表达分析至关重要。 GO注释的结果可 以用于多种分析,包括基因本体论富集分析,这是一种统计方法,用于确定在一组基因中哪些GO术 语的出现频率显着高于随机预期,从而揭示基因集的生物学功能。
本文由内布拉斯加大学林肯分校 DigitalCommons 机械与材料工程系免费提供给您,供您免费访问。本文已被内布拉斯加大学林肯分校 DigitalCommons 授权管理员接受并收录在《机械(和材料)工程——学位论文、毕业论文和学生研究》中。
CRISPR (clustered, regularly interspaced, short palindromic repeats) 是一种来自细菌降解入侵的病毒 DNA 或其 他外源 DNA 的免疫机制。在该机制中, Cas 蛋白( CRISP‐associated protein )含有两个核酸酶结构域,可以 分别切割两条 DNA 链。一旦与 crRNA ( CRISPR RNA )和 tracrRNA 结合形成复合物, Cas 蛋白中的核酸酶即 可对与复合物结合的 DNA 进行切割。切割后 DNA 双链断裂从而使入侵的外源 DNA 降解。
本文由内布拉斯加大学林肯分校 DigitalCommons 机械与材料工程系免费提供给您,供您免费访问。本文已被内布拉斯加大学林肯分校 DigitalCommons 授权管理员接受并收录在《机械(和材料)工程——学位论文、毕业论文和学生研究》中。
摘要................................................................................................................................................3