从 3D 显微镜图像重建数字神经元是研究大脑连接组学和神经元形态的重要技术。现有的重建框架使用基于卷积的分割网络在应用追踪算法之前将神经元从噪声背景中分割出来。追踪结果对原始图像质量和分割精度很敏感。在本文中,我们提出了一种新的 3D 神经元重建框架。我们的关键思想是利用点云的几何表示能力来更好地探索神经元的内在结构信息。我们提出的框架采用一个图卷积网络来预测神经骨架点,采用另一个图卷积网络来产生这些点的连通性。我们最终通过解释预测的点坐标、半径和连接来生成目标 SWC 文件。在 BigNeuron 项目的 Janelia-Fly 数据集上进行评估,我们表明我们的框架实现了具有竞争力的神经元重建性能。我们对点云的几何和拓扑学习可以进一步有益于 3D 医学图像分析,例如心脏表面重建。我们的代码可在 https://github.com/RunkaiZhao/PointNeuron 上找到。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
如今,空气和噪音污染的持续增加已成为一种长期的滋扰,同时也是一个令人担忧的问题。在本期刊中,我们将提供一个系统来测量和监控环境参数,并在空气质量和噪音水平超过安全水平时发出警报。该系统使用必要的传感器来检测大气中的气体以及特定区域的噪音水平,并将其传输到微控制器 NodeMCU。现在,通过 Wi-Fi 凭证连接到 Node MCU 的云平台 Blynk 会获取数据并通过与被视为安全水平的值进行比较来处理数据。当每个空气质量和噪音污染变量超过允许水平时,这个基于云的监控应用程序 Blynk 还会提供一个警报系统。它通过向 Android 设备发送电子邮件或消息来通知用户,甚至可以激活蜂鸣器作为警报。这些数据被连续传输,并被存储以供进一步解释。这种基于云的污染监测系统是最经济、最可靠、最具成本效益的,并且可以增强以应对即将到来的挑战。2021 Elsevier Ltd. 保留所有权利。由第二届国际创新技术和科学会议 (iCITES 2020) 的科学委员会负责选择和同行评审。
Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。 需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。 太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。 在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。 使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。 太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。 PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。 要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。
Ametek,威斯巴登 Aptiv,伍珀塔尔 BASF Coatings,明斯特 Block Materialprüfungsgesellschaft,柏林 BP,波鸿 Bruker Nano,柏林 联邦刑事警察局,威斯巴登 Carl von Ossietzky 奥尔登堡大学 Carl Zeiss Jena,上科亨 CleanControlling,埃明根-利普廷根 Conti Temic 微电子,因戈尔施塔特 CRB 分析服务,哈德格森 Currenta,勒沃库森 CVUA-RRW,克雷费尔德 D&I-Vallourec 研究中心,法国 Aulnoye-Aymeries DePuy Synthes,奥伯多夫 Dr. Graner & Partner,慕尼黑 EFI 服务,布达佩斯 EnBW Kernkraft,菲利普斯堡 Felix Schoeller,奥斯纳布吕克 苏黎世法医研究所 柏林研究协会 弗劳恩霍夫硅酸盐研究所 ISC,维尔茨堡 研究发展基金会 - FUNDEP,贝洛奥里藏特 汉诺威莱布尼茨大学 GSI,柏林 HARTING,埃斯珀尔坎普 Henkel,杜塞尔多夫 Heraeus Germany,哈瑙 Hirschmann Automotive,兰克韦尔 阿伦大学 普福尔茨海姆大学 IfW,埃森 INDIKATOR,伍珀塔尔 Infineon Technologies,慕尼黑工程协会 Meyer & Horn-Samodelkin 显微镜实验室,罗斯托克 德累斯顿腐蚀防护研究所 麦德林大都会技术学院,麦德林 集成微电子学,Biñan JOMESA 测量系统,Ismaning Kronos,勒沃库森 实验室 Dr.舍夫纳(Schäffner),索林根实验室克奈斯勒(Kneißler),布尔格伦根费尔德(Burglengenfeld)下萨克森州刑事警察局,汉诺威
我写这本书的首要动机是一句您将在接下来的内容中多次看到的短语。这句话是:“转移性疾病无法治愈”。这句话之所以如此重要,是因为尽管我们在癌症研究方面取得了数十年的巨大进步,但一旦疾病扩散到远处器官,患者的治疗进展就非常有限。正因为如此,我们作为一个社区显然是时候尝试一些新方法了,因为标准化疗虽然在疾病的其他阶段有用,但无法让我们到达最后的顶峰,即转移性癌症的治愈。在我看来,其中一种这样的策略涉及将现代人工智能 (AI) 和机器学习 (ML) 方法应用于从癌症患者和癌症衍生细胞系中积累的大量基因组数据,以制定真正个性化的策略,以对个体患者进行癌症逆向工程。因此,本书的目标是让读者相信这是可能的,至少是一条值得追求的途径。首先我要说的是,我将在本书中强调人工智能对基因组数据的分析如何帮助我们更好地利用癌症靶向疗法。与此同时,其他人也在努力开发类似的方法,利用计算和人工智能方法来改善癌症免疫疗法的使用,因为免疫疗法提供了另一套可用于转移性癌症患者的工具。由于我不是免疫学家,我不会在这里讨论这些方法,因为它们可以在其他出版物中找到。
服务区∙pediatrixmd∙凤凰儿童∙凤凰印度医疗中心∙皮玛县卫生局∙pinal县∙宜人儿科∙河流人民健康中心∙san carlos apache healthcache∙圣卡洛斯医疗保健
研究指南,Acharya Nagarjuna 大学。摘要 对于所有规模的组织和 ISP,有史以来最具破坏性的攻击都是 DDoS 攻击 (分布式拒绝服务)。由于 DDoS 出租服务的可用性提高,数十亿不安全的僵尸网络和 IoT 设备的产生导致 DDoS 攻击增加。这些 DDoS 攻击的频率、规模和复杂程度不断增加。由于这些攻击日益智能化以及 IDS 的逃避,包括清理和基于签名的检测在内的传统方法受到了挑战。由于攻击规模主要集中在组织上,下一代安全技术无法跟上步伐。由于对人为干预的要求较高,基于异常的检测在误报和准确率方面存在各种限制。本文利用机器学习(ML)模型,基于开放的CICIDS2017数据集进行了DDoS异常检测。但是,使用该ML模型并精心调整超参数可以达到最大准确率。关键词:DDoS攻击,异常检测,机器学习,入侵检测系统,准确性。
