背景:美国食品药品监督管理局 (FDA) 已批准三种 HPV(人乳头瘤病毒)疫苗。疾病控制和预防中心 (CDC) 和免疫实践咨询委员会 (ACIP) 建议在 11 岁或 12 岁时常规接种 HPV 疫苗。本研究旨在总结和描述 2006 年 7 月至 2017 年 5 月期间报告给 VAERS 数据库的 HPV 疫苗接种后不良事件。方法:在 VAERS 数据库中对与 HPV 疫苗相关的报告进行系统数据挖掘。在 HPV 疫苗接种后,在 VAERS 数据库中确定了临床相关的疫苗事件组合 (VEC)。仅当数据库中针对给定的不良事件 (AE) 存在至少 100 份报告时,才会考虑对 VEC 进行分析。本研究中使用的数据挖掘算法是报告比值比。ROR-1.96SE >1 的值被视为阳性信号。结果:在研究期间,VAERS 在接种 HPV 疫苗后收到了 49444 份报告。在 49444 份报告中,发现了 2307 份独特反应。共有 177 份死亡报告和 3526 份非死亡严重反应报告给 VAERS。ROR 显示腹痛、晕厥、头晕、抽搐、自然流产、脱发、闭经、肛门生殖器疣、宫颈发育不良、贫血、运动障碍、偏头痛、血压下降、跌倒、头部受伤、意识丧失、苍白、晕厥前兆、癫痫发作等症状呈阳性。结论:本分析未发现任何新的/意外的安全问题,与上市前试验的安全数据一致。需要进一步的流行病学研究来系统地验证 VAERS 提供的数据。
永久牧场可以拥有高植物多样性,包括一些稀有植物。环境影响评估(EIA)法规已适当以保护这种多样性。但是,某些永久性牧场的植物多样性低,生产率较低,并且由对牲畜的古怪性低的杂草草主导。
3.1可切除的非小细胞肺癌(NSCLC)的标准护理是具有化学疗法和外科切除术的新辅助Nivolumab(从现在开始,Neoadjuvant Nivolumab)。其他治疗方案包括新辅助化学疗法和通过癌症药物基金(CDF)进行或不进行维持的辅助化学疗法。可切除的NSCLC通常是早期或局部晚期癌症,不包括3C期。手术可以治愈癌症,但复发很常见,可以是局部区域(在肺部和附近的淋巴结中)或远处转移(身体的其他部位)。患者组织提交报告说,手术后NSCLC的复发通常意味着不太可能进行进一步的治疗治疗。它解释说,判断手术是否治愈的唯一方法是等待,这会导致病情及其家人及其家人和护理人员的持续焦虑。患者组织
“ HyGéo 是一个创新项目,展示了各地区在化石燃料替代解决方案方面的专业知识。前景非常光明。我们很自豪能够维持我们当地的财富,并支持部署新的氢气储存系统,以应对我们面临的新环境挑战。” 阿兰·鲁塞特——新阿基坦大区议会主席 HyGéo 是一个独特的机会,可以发展法国在地球科学和能源方面的混合专业知识。它的目的是成为更广泛部署绿色氢解决方案的起点,动员地区公司走向新阿基坦的能源自主。这种部署是实现雄心勃勃的区域、国家或欧洲能源转型目标的可行和现实的解决方案。” 在法国海外领土和国外启动了几个具体的项目后,我们很高兴继续在我们地区部署。与 Teréga 的合作基于我们的互补性和快速投入运营的愿望。为大规模可再生能源储存铺平道路真是太棒了! “
疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
结构磁共振成像 (sMRI),尤其是纵向 sMRI,通常用于在阿尔茨海默病 (AD) 临床诊断期间监测和捕捉病情进展。然而,目前的方法忽视了 AD 的渐进性,大多依赖单一图像来识别 AD。在本文中,我们考虑利用受试者的纵向 MRI 进行 AD 分类的问题。为了解决学习纵向 3D MRI 时缺失数据、数据需求和随时间发生的细微变化等挑战,我们提出了一个新模型 LongFormer,它是一种混合 3D CNN 和变压器设计,可从图像和纵向流对中学习。我们的模型可以充分利用数据集中的所有图像,并有效地融合时空特征进行分类。我们在三个数据集(即 ADNI、OASIS 和 AIBL)上评估我们的模型,并将其与八种基线算法进行比较。我们提出的 LongFormer 在对来自所有三个公共数据集的 AD 和 NC 对象进行分类方面取得了最先进的性能。我们的源代码可从 https://github.com/Qybc/LongFormer 在线获取。
森林在地面碳循环中至关重要,并且对它们对持续气候变化的反应的了解对于确定未来的碳浮动和气候轨迹至关重要。在具有对比季节的区域,树木形成可以分配给日历年的离散年环,从而可以提取有关树木对环境的反应的宝贵信息。木材的解剖结构提供了有关树木对气候的反应和适应的高度分辨信息。定量木材解剖结构有助于通过使用木材微剖面的高分辨率图像在细胞水平上测量木材来检索这些信息。然而,尽管在识别细胞结构方面已经取得了很大的进步,但获得有意义的细胞信息仍然受图像上正确的年度树环界定的阻碍。这是一项耗时的任务,需要经验丰富的操作员手动界定环边界。基于像素值的自动分割的经典方法正在用能够区分结构的新方法代替,即使分界需要高水平的专业知识。尽管已使用神经网络进行木环的分割,但木制的木材图像,但阔叶物种染色的微观切片中细胞模式的复杂性需要自适应模型才能准确地完成此任务。我们在山毛榉核心染色的横截面微隔板图像上使用神经网络提出了自动树环边界划定。基于卷积神经网络的应用我们训练了一个UNETR,一个UNET的联合神经网络和视觉变压器的注意机制,以自动分段年度环边界。考虑到具有手动分割的差异以及数量木材解剖学分析目标的差异以及差异的后果。在大多数情况下(91.8%),自动分割匹配或改进了手动细分,即使将手动细分视为更好的情况,两种类别之间的船只分配率也相似。
Ametek,威斯巴登 Aptiv,伍珀塔尔 BASF Coatings,明斯特 Block Materialprüfungsgesellschaft,柏林 BP,波鸿 Bruker Nano,柏林 联邦刑事警察局,威斯巴登 Carl von Ossietzky 奥尔登堡大学 Carl Zeiss Jena,上科亨 CleanControlling,埃明根-利普廷根 Conti Temic 微电子,因戈尔施塔特 CRB 分析服务,哈德格森 Currenta,勒沃库森 CVUA-RRW,克雷费尔德 D&I-Vallourec 研究中心,法国 Aulnoye-Aymeries DePuy Synthes,奥伯多夫 Dr. Graner & Partner,慕尼黑 EFI 服务,布达佩斯 EnBW Kernkraft,菲利普斯堡 Felix Schoeller,奥斯纳布吕克 苏黎世法医研究所 柏林研究协会 弗劳恩霍夫硅酸盐研究所 ISC,维尔茨堡 研究发展基金会 - FUNDEP,贝洛奥里藏特 汉诺威莱布尼茨大学 GSI,柏林 HARTING,埃斯珀尔坎普 Henkel,杜塞尔多夫 Heraeus Germany,哈瑙 Hirschmann Automotive,兰克韦尔 阿伦大学 普福尔茨海姆大学 IfW,埃森 INDIKATOR,伍珀塔尔 Infineon Technologies,慕尼黑工程协会 Meyer & Horn-Samodelkin 显微镜实验室,罗斯托克 德累斯顿腐蚀防护研究所 麦德林大都会技术学院,麦德林 集成微电子学,Biñan JOMESA 测量系统,Ismaning Kronos,勒沃库森 实验室 Dr.舍夫纳(Schäffner),索林根实验室克奈斯勒(Kneißler),布尔格伦根费尔德(Burglengenfeld)下萨克森州刑事警察局,汉诺威
Altiux Innovations是一个软件和产品工程服务组织,致力于帮助您加速物联网解决方案和产品的开发。我们在整个IoT开发周期中提供专门的工程服务,从咨询,设备工程,云和移动应用程序开发,数据分析以及支持和维护。Altiux已开发了一个IoT Toolkit -BoxPwr™。BoxPwr是一套为传感器节点和执行器,通信网关,边缘计算和云连接性的软件框架的生产套件,有助于加速物联网产品和解决方案开发。
摘要:神经科学的主要目标是了解神经系统或神经回路组合如何产生和控制行为。如果我们能够可靠地模拟整个神经系统,从而复制大脑对任何刺激和不同环境的反应动态,那么测试和改进我们的神经控制理论将变得非常容易。更根本的是,重建或建模一个系统是理解它的一个重要里程碑,因此,模拟整个神经系统本身就是系统神经科学的目标之一,实际上是梦想。要做到这一点,我们需要确定每个神经元的输出如何依赖于某个神经系统中的输入。这种解构——从输入输出对理解功能——属于逆向工程的范畴。目前对大脑进行逆向工程的努力主要集中在哺乳动物的神经系统上,但这些大脑极其复杂,只能记录微小的子系统。我们在此认为,现在是系统神经科学开始齐心协力对较小系统进行逆向工程的时候了,而秀丽隐杆线虫是理想的候选系统。特别是,已建立并不断发展的光生理学技术工具包可以非侵入性地捕获和控制每个神经元的活动,并扩展到大量动物群体的数十万次实验。由于个体神经元的身份在形式和功能上基本保持不变,因此可以合并不同群体和行为的数据。然后,基于现代机器学习的模型训练应该能够模拟秀丽隐杆线虫令人印象深刻的大脑状态和行为范围。对整个神经系统进行逆向工程的能力将有利于系统神经科学以及人工智能系统的设计,从而为研究越来越大的神经系统提供根本性的见解和新方法。
