摘要:焦虑症 (AD) 是一种主要的精神疾病。然而,由于 AD 的症状和混杂因素很多,很难诊断,患者长期得不到治疗。因此,研究人员对非侵入性生物信号的兴趣日益浓厚,例如脑电图 (EEG)、心电图 (ECG)、皮肤电反应 (EDA) 和呼吸 (RSP)。将机器学习应用于这些信号使临床医生能够识别焦虑模式并区分病人和健康人。此外,已经开发了具有多种不同生物信号的模型,以提高准确性和便利性。本文回顾并总结了 2012 年至 2022 年发表的将不同的机器学习算法应用于各种生物信号的研究。在此过程中,它提供了当前发展优缺点的观点,以指导未来焦虑检测的进步。具体而言,这篇文献综述表明,对于样本量为 10 至 102 名参与者的研究,测量准确度在 55% 至 98% 之间,非常有希望。平均而言,仅使用 EEG 的研究似乎获得了最佳性能,但使用 EDA、RSP 和心率可获得最准确的结果。随机森林和支持向量机被发现是广泛使用的机器学习方法,只要进行了特征选择,它们就会产生良好的结果。神经网络也被广泛使用,并提供良好的准确性,其优点是不需要进行特征选择。这篇综述还评论了模态的有效组合以及检测焦虑的不同模型的成功。
煤炭处理厂中的抑制系统。seil确保了控制逃亡煤炭的有效机制。- SEIL提供了在煤炭破碎机和煤层堆场运行的粉尘抑制系统,即兴干燥的雾气抑制系统(DFDS)也安装在传输点,以最大程度地减少逃亡灰尘,沿着院子的两侧提供了沿着任何逃亡者的供应。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
近年来,提高绿色能源的使用率以满足日益增长的能源需求和应对全球变暖已成为各国的重要目标之一。因此,将可再生能源整合为分布式发电变得越来越流行。在本研究中,为土耳其代尼兹利省萨拉伊科伊区一个 100 户家庭的电气化设计了混合可再生能源系统,并使用电力可再生能源混合优化模型程序来优化所需的组件输出,以实现最佳的经济和环境效果。共创建了六种混合可再生能源系统设计,三种并网和三种独立系统,这些系统采用了光伏板、风力涡轮机、柴油发电机、电池储能系统和转换器等不同组件的组合。最经济的设计是仅使用太阳能的并网系统,单位能源成本为 0.0362 美元/千瓦时,而最具成本效益的是包含太阳能、风能和电池的独立系统,成本为 1.61 美元/千瓦时。从环境角度来说,离网系统恰恰相反,排放的二氧化碳较少,而并网系统排放的二氧化碳较多。
J.-L. Vay、A. Huebl,“等离子体粒子加速器大规模建模中原位/传输方法的应用”,ISAV'20 研讨会主题演讲 (2020);M. Larsen 等人,“ALPINE 原位基础设施:从稻草人的灰烬中崛起”,ISAV'17 会议论文 (2017)
三重军用防护箱,抗压、防水、吸能两块锂电池及充电器,PDA配件,防辐射罩配件万能充电器及车充,4张SD存储卡及读卡器可选配件:大电池,座式测试支架,蓝牙打印机,磨机,手动压机,不同目数的筛子
我写这本书的首要动机是一句您将在接下来的内容中多次看到的短语。这句话是:“转移性疾病无法治愈”。这句话之所以如此重要,是因为尽管我们在癌症研究方面取得了数十年的巨大进步,但一旦疾病扩散到远处器官,患者的治疗进展就非常有限。正因为如此,我们作为一个社区显然是时候尝试一些新方法了,因为标准化疗虽然在疾病的其他阶段有用,但无法让我们到达最后的顶峰,即转移性癌症的治愈。在我看来,其中一种这样的策略涉及将现代人工智能 (AI) 和机器学习 (ML) 方法应用于从癌症患者和癌症衍生细胞系中积累的大量基因组数据,以制定真正个性化的策略,以对个体患者进行癌症逆向工程。因此,本书的目标是让读者相信这是可能的,至少是一条值得追求的途径。首先我要说的是,我将在本书中强调人工智能对基因组数据的分析如何帮助我们更好地利用癌症靶向疗法。与此同时,其他人也在努力开发类似的方法,利用计算和人工智能方法来改善癌症免疫疗法的使用,因为免疫疗法提供了另一套可用于转移性癌症患者的工具。由于我不是免疫学家,我不会在这里讨论这些方法,因为它们可以在其他出版物中找到。
从 3D 显微镜图像重建数字神经元是研究大脑连接组学和神经元形态的重要技术。现有的重建框架使用基于卷积的分割网络在应用追踪算法之前将神经元从噪声背景中分割出来。追踪结果对原始图像质量和分割精度很敏感。在本文中,我们提出了一种新的 3D 神经元重建框架。我们的关键思想是利用点云的几何表示能力来更好地探索神经元的内在结构信息。我们提出的框架采用一个图卷积网络来预测神经骨架点,采用另一个图卷积网络来产生这些点的连通性。我们最终通过解释预测的点坐标、半径和连接来生成目标 SWC 文件。在 BigNeuron 项目的 Janelia-Fly 数据集上进行评估,我们表明我们的框架实现了具有竞争力的神经元重建性能。我们对点云的几何和拓扑学习可以进一步有益于 3D 医学图像分析,例如心脏表面重建。我们的代码可在 https://github.com/RunkaiZhao/PointNeuron 上找到。
这项研究得到了日本学术振兴会 (JSPS) KAKENHI(资助编号:18H03974、19KK0401、22K19238、23H00367、24K02010、22H04922(AdAMS))、日本科学技术振兴机构 COI-NEXT(JPMJPF2010)和日本医疗研究发展机构 (AMED)(24bm12230009)的支持。 名词解释(注1) CRISPR-Cas3:许多细菌都有一种名为CRISPR-Cas系统的防御系统,类似于适应性免疫。 CRISPR-Cas3属于1类CRISPR系统,2019年被报道为一种使用多蛋白复合物人工切割DNA的国产基因组编辑工具。 (注2)脱靶突变:在基因组编辑技术中,DNA序列中非预期的突变发生在特定目标序列以外的位置。最大限度地减少脱靶突变被认为对于基因组编辑技术的高度安全性至关重要。 (注3)长读测序:与传统方法相比,一次分析更长片段的DNA或RNA碱基序列的技术。在本研究中,我们使用了纳米孔测序方法,这是一种通过将序列穿过纳米级孔(纳米孔)实现高速解码的技术。
部长将首先向士官长发表讲话。在此背景下,部长和总统之间计划举行一次自发的问答环节。随后,武装部队和退伍军人部部长将纪念布瓦凯轰炸20周年,并在阵亡和受伤士官家属的见证下,为“布瓦凯士官”展台揭幕。
