带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
摘要 本研究使用具有平面扫描功能的电光 (EO) 传感器演示了基于光子学的 300 GHz 频段近场测量和远场特性分析。待测场在 EO 传感器处上变频至光域 (1550 nm),并通过光纤传送至测量系统。在 13 s 的一维测量时间内,系统的典型相位漂移为 0.46 ◦,小于该时间尺度下相位测量的标准偏差 1.2 ◦。将从测得的近场分布计算出的喇叭天线远场方向图与使用矢量网络分析仪通过直接远场测量系统测得的远场方向图进行了比较。对于与角度相关的参数,我们通过近场测量获得的结果的精度与通过直接远场测量获得的结果相当。我们的近场测量结果与直接远场测量结果之间的旁瓣电平差异(约 1 dB)归因于探针校正数据的过量噪声。我们相信,基于光子学的球形 EO 探针扫描近场测量将为 300 GHz 频段高增益天线的表征铺平道路。
半导体设备在电子行业中起着至关重要的作用。这些设备包括从领先的硅技术到复合半导体方法的各种类型。尤其是IIII-V复合半导体激光器在几十年中变得越来越重要,在各种领域(例如微电子,光电子学和光学电信)中找到了应用。半导体的多功能性允许对其属性进行自定义修改,以满足特定应用程序的需求。在设计光学元件时,半导体激光器的远场是至关重要的参数,因为许多半导体激光应用需要与单模光纤建立足够的连接。使用单模激光器设备,可以将更多功率传递到光纤。此外,从光学的角度来看,单模式激光器更好,因为光线更容易对齐。因此,使用单模半导体激光比构建复杂的光学系统要容易得多。在本文中,基于GAAS的630 nm区域半导体激光器的远场是与Modulight Corporation合作的优化。目标是了解制造步骤和选定的设备几何形状如何影响这些激光器的远场模式,从而改善对设备过程和过程产量的控制。远场高度依赖于激光设备的尺寸,因此,将两种不同的底物(638 nm和633 nm)与不同的尺寸一起使用以进行比较。除了远场外,还分析了光电压和光谱测量值。此外,为了更好地了解脊指导的光学特性和几何形状之间的依赖性,使用扫描电子显微镜测量了脊的尺寸。本论文中使用的激光条是通过光刻的步骤和等离子体蚀刻来捏造的。否则两个底物的处理都是相同的,但是633 nm底物的蚀刻时间更长,从而产生了更深的蚀刻深度。两个设备都使用了五个不同的脊宽度和三个不同的空腔长度。将实现的脊尺寸和调间模式行为与630 nm区域半导体激光结构的这些参数的建模结果进行了比较。脊的尺寸的表征结果显示了两个过程的各向异性和平滑档案。633 nm设备的蚀刻时间较长,导致脊比638 nm设备深507 nm,这是预期的。与638 nm设备相比,具有更深山脊的633 nm设备具有更深的山脊的阈值电流和输出功率变化较小。这项工作的目的是实现具有单模空间操作的激光器,该激光器是用633 nm激光器获得的。最佳尺寸为1000 µm的腔长为1.8 µm和3.4 µm的脊宽度,腔长为1500 µm,脊宽为2.2 µm。对于较浅的山脊深度,即638 nm激光器,所有选定的脊宽度和长度均显示多模具操作。此外,模拟结果很好地支持了实验结果。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
大涡模拟 (LES) 已用于研究飞机编队后方 10 分钟内的远场四涡尾流涡旋演变情况。在编队飞行场景中,尾流涡旋行为比传统的单架飞机情况复杂、混乱且多样,并且非常敏感地取决于编队几何形状,即两架飞机的横向和垂直偏移。尽管在各种编队飞行场景中尾流涡旋行为的个案变化很大,但涡旋消散后的最终羽流尺寸通常与单架飞机场景有很大不同。羽流深约 170 至 250 米,宽约 400 至 680 米,而一架 A350/B777 飞机将产生 480 米深和 330 米宽的羽流。因此,编队飞行羽流没有那么深,但它们更宽,因为涡流不仅垂直传播,而且沿翼展方向传播。两种不同的 LES 模型已被独立使用,并显示出一致的结果,表明研究结果的稳健性。值得注意的是,二氧化碳排放只是航空气候影响的一个因素,还有其他几个因素,如凝结尾迹、水蒸气和氮氧化物的排放,这些都会受到编队飞行的影响。因此,我们还强调了年轻编队飞行凝结尾迹与经典凝结尾迹在冰微物理和几何特性方面的差异