summary深层生成模型通常用于从复杂的高维分布中生成样品。尽管取得了明显的成功,但其统计特性尚未得到很好的理解。一个常见的假设是,借助足够大的训练数据和足够大的神经网络,深层生成模型样本在从任何连续目标分布中采样时都会有很小的错误。我们建立了一个统一的框架,揭穿了这种信念。我们证明,广泛的深层生成模型(包括变异自动编码器和生成对抗网络)不是通用发生器。在高斯潜在变量的主要情况下,这些模型只能生成浓缩的样品,显示出轻尾。使用来自度量和凸几何浓度的工具,我们为更通用的对数concave和强烈的log-conconcove潜在变量分布提供了类似的结果。我们通过还原参数将结果扩展到扩散模型。,当潜在变量位于带正曲率的歧管上时,我们使用Gromov -levy不等式提供了类似的保证。这些结果阐明了常见的深层生成模型处理重型尾巴的能力有限。我们说明了工作与模拟和财务数据的经验相关性。
summary深层生成模型通常用于从复杂的高维分布中生成样品。尽管取得了明显的成功,但其统计特性尚未得到很好的理解。一个常见的假设是,借助足够大的训练数据和足够大的神经网络,深层生成模型样本在从任何连续目标分布中采样时都会有很小的错误。我们建立了一个统一的框架,揭穿了这种信念。我们证明,广泛的深层生成模型(包括变异自动编码器和生成对抗网络)不是通用发生器。在高斯潜在变量的主要情况下,这些模型只能生成浓缩的样品,显示出轻尾。使用来自度量和凸几何浓度的工具,我们为更通用的对数concave和强烈的log-conconcove潜在变量分布提供了类似的结果。我们通过还原参数将结果扩展到扩散模型。,当潜在变量位于带正曲率的歧管上时,我们使用Gromov -levy不等式提供了类似的保证。这些结果阐明了常见的深层生成模型处理重型尾巴的能力有限。我们说明了工作与模拟和财务数据的经验相关性。
鸟类雷达发展概述 – 过去、现在和未来 Tim J. Nohara,工学学士、工学硕士、博士、PE,Accipiter 雷达技术公司。 Peter Weber,工学学士、工学硕士,Accipiter 雷达技术公司。 Andrew Ukrainec,工学学士、博士,Accipiter 雷达技术公司。 Al Premji,工学学士、工学硕士、博士,Accipiter 雷达技术公司。 Graeme Jones,工学学士、博士,Accipiter 雷达技术公司。 关键词:鸟类、雷达、网络、鸟类、跟踪、检测、融合、自动化、打击、实时、咨询、BASH、经济实惠、飞机、3D、测高、目标提取、鸟类学、海洋、双波束 摘要 几十年来,鸟类学家和生物学家一直使用雷达来表征鸟类和其他生物空中目标的存在和运动。X 波段和 S 波段海洋雷达收发器已成功应用于自然资源管理 (NRM)、环境影响评估 (EIA) 和鸟类飞机撞击危险 (BASH) 管理等应用。在过去的几年中,市场上出现了许多进步,其他进步也正在不断涌现,带来了许多潜在的好处。这些包括: • 性能改进, • 连续目标数据记录, • 分析和可视化自动化, • 远程和无人值守操作, • 自动警报, • 广域覆盖, • 集中目标数据收集, • 多传感器融合, • 向远程用户实时分发目标数据,以及 • 实时集成到第三方态势感知应用程序和基于互联网的应用程序中。本文的目的是回顾并有组织地审视鸟类雷达技术的这些发展,以期提高我们对这套复杂工具的理解。通过回顾过去,我们将提供一个背景,以便人们更好地了解目前所取得的成就,以及技术和产品在未来仍需发展的方向。希望更好的理解将有助于利益相关者在今天和明天充分利用这些工具。1.简介 BASH 管理问题需要在相对较大的监视范围内对小型机动鸟类目标和飞机进行经济高效、实时(仅受较小延迟影响)的 3D 跟踪。本文的主题是满足 BASH 管理要求的机场鸟类雷达系统,因为它们也能够解决 NRM 和 EIA 应用。