当前工作基于迄今为止对集团温室气体足迹的最新和最佳估计。值得注意的是,随着集团收集更准确的排放量估计并改进其范围 3 足迹数据,这一基线已发生了历史性变化。欧莱雅重申了其基线,以纳入排放报告方法和数据可用性的改进。范围 3 报告仍然依赖于基于支出的排放估计和标准排放因子(例如来自 Ecoinvent)的组合,而其供应商无法提供具体数据。欧莱雅正在努力尽可能提高数据可用性和质量。此外,集团反映了其组织结构的变化。这些重述在其年度报告(URD)中披露。
本出版物仅供参考,并非投资活动建议。本出版物“按原样”提供,不作任何形式的陈述或保证。尽管已采取一切合理措施确保内容的准确性,但泛欧交易所不保证其准确性或完整性。泛欧交易所对因使用、信任或根据所提供信息采取行动而造成的任何损失或损害概不负责。本出版物中列出或提及的任何信息均不构成任何合同的基础。泛欧交易所子公司运营的交易所交易的金融产品的权利和义务的产生应完全取决于市场运营商的适用规则。本出版物中或与本出版物相关的所有所有权和利益均归泛欧交易所所有。未经泛欧交易所事先书面许可,不得以任何形式重新分发或复制本出版物的任何部分。
我们提出了一个精确可解的玩具模型,用于 N 个量子比特的置换不变图状态的连续耗散动力学。此类状态局部等效于 N 个量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态,后者是许多量子信息处理装置中的基本资源。我们重点研究由 Lindblad 主方程控制的状态的时间演化,该方程具有三个标准单量子比特跳跃算子,哈密顿量部分设置为零。通过推导出在 Pauli 基中随时展开的可观测量的期望值的解析表达式,我们分析了非平凡的中间时间动力学。使用基于矩阵乘积算子的数值求解器,我们模拟了最多 64 个量子比特的系统的时间演化,并验证了数值上与解析结果的精确一致性。我们发现,系统二分算子空间纠缠熵的演化呈现出一个平台期,其持续时间随着量子比特的数量呈对数增加,而所有泡利算子积的期望值最多在常数时间内衰减。
摘要 — 由于量子计算的内置并行性,未来量子计算机在处理一些复杂的模糊逻辑计算方面具有未被开发的潜力。最近,在一种称为量子退火器的量子计算机上,引入了一种基于解决二次无约束二进制优化 (QUBO) 问题的模糊集的新表示和一些基本模糊逻辑运算符 (并集、交集、alpha 切割和最大值) 的实现。本文通过提出一种基于二进制二次模型 (BQM) 的量子退火机上的质心去模糊化的实现来扩展这项工作,但这次使用的是 Ising 模型。通过在量子计算机上实现基本操作和去模糊化,本文为在量子退火器等增强型设备上实现整个模糊推理引擎铺平了道路。索引术语 — 量子计算、模糊逻辑、模糊集。
1 上海大学国际量子人工智能科学技术中心 (QuArtist) 和物理系,上海 200444,中国 2 巴斯克大学 UPV/EHU 物理化学系,Apartado 644,4800,西班牙省,上海市,上海市 200444,中国 4 量子中心,Uribitarte Kalea 6,48001 毕尔巴鄂,西班牙 5 巴斯克大学 UPV/EHU EHU 量子中心,Apartado 644,48080 毕尔巴鄂,西班牙 6 核与世俗大学原子物理系,1004 villa,西班牙 7 卡洛斯一世物理理论与计算研究所,18071 格拉纳达,西班牙 8 瓦伦西亚大学电子工程系 IDAL,Avgda。 Universitat s/n, 46100 Burjassot, 西班牙 9 ValgrAI:瓦伦西亚人工智能研究生院和研究网络,Camí de Vera, s/n, Edificio 3Q, 46022 Valencia, 西班牙 10 多元宇宙计算,Pio Baroja 2018,圣塞瓦斯蒂安,西班牙 ysics Center,Paseo Manuel de Lardizabal 4, 20018 San Sebastián, 西班牙 12 IKERBASQUE,巴斯克科学基金会,Plaza Euskadi 5, 48009 Bilbao, 西班牙 13 Kipu Quantum,Greifswalderstrasse 226, 10405 Berlin Application Centre, Berlin Application Center 14 Alameda de Mazarredo 14, 48009 Bilbao, 西班牙 * 通讯地址:javier.gonzalezc@ehu.eus
ρnm(t)=⟨n| p(t)| m⟩=⟨n| ψ ( t ) ⟩⟨ ψ ( t ) | m⟩=⟨n|乌 | ψ 0 ⟩⟨ ψ 0 | †米⟩(22)
两端施加相反自旋极化的有限长度铁磁链是最简单的受挫自旋模型之一。在干净的经典极限中,由于边界条件而插入的畴壁以相等的概率存在于任何一个键上,并且简并度恰好等于键数。如果通过横向场引入量子力学,畴壁将表现为盒子中的粒子,并且更倾向于靠近链的中间而不是两端。因此,真实量子退火器的一个简单特征是这些极限中的哪一个在实践中实现。在这里,我们使用具有反平行边界自旋的铁磁链来测试真实通量量子比特量子退火器,并发现与两个预期相反,由于存在有效随机纵向场,发现的畴壁分布不均匀,尽管在量子比特之间的耦合名义上为零时进行了调整以将这些场归零。我们对畴壁分布函数的形式进行了简单的推导,并展示了我们发现的效应如何用于确定表征退火器的有效随机场(噪声)的强度。以这种方式测量的噪声小于单量子比特调谐过程中看到的噪声,但仍然会定性地影响退火器执行的模拟结果。
摘要 — 量子计算将通过利用叠加、纠缠和干涉等量子力学效应,实现大规模并行算法的设计,从而以有效方式解决难题,从而彻底改变计算领域。这些计算改进可能会对模糊系统在诸如大数据等环境中的设计和使用方式产生重大影响,在这些环境中,计算效率是一个不可忽略的约束。为了为这一创新方案铺平道路,本文介绍了一种基于二次无约束二元优化 (QUBO) 问题的模糊集和运算符的新表示,以便在一种称为量子退火器的量子计算机上实现模糊推理引擎。
在工程(以及其他学科)的许多实际情况下,我们需要解决优化问题:我们想要一个最佳设计,我们想要一个最佳控制,等等。优化的主要问题之一是避免局部最大值(或最小值)。有助于解决此问题的技术之一是退火:每当我们发现自己处于可能的局部最大值时,我们都会以某种概率跳出并继续寻找真正的最优值。组织这种确定性优化的概率扰动的自然方法是使用量子效应。事实证明,量子退火通常比非量子退火效果好得多。量子退火是唯一使用量子效应的商用计算设备——D-Wave 计算机背后的主要技术。量子退火的效率取决于退火计划的正确选择,即描述扰动如何随时间减少的计划。根据经验,已经发现两种计划效果最好:幂律和指数计划。在本文中,我们通过证明这两个时间表确实是最优的(在某种合理的意义上),为这些实证成功提供了理论解释。
泛欧交易所注册于荷兰,是一家在阿姆斯特丹泛欧交易所、巴黎泛欧交易所和布鲁塞尔泛欧交易所等受监管市场上市的上市公司。泛欧交易所在金融生态系统中占据重要地位。它通过在透明、高效和可靠的高诚信交易场所将买家和卖家聚集在一起,为实体经济提供服务。金融业可以成为全球可持续发展议程的重要贡献者,并可以通过将环境、社会和治理 (ESG) 因素纳入投资决策,并支持将资本分配给可持续计划来促进可持续金融。在这一关键角色中,泛欧交易所对整个金融界负有责任,为其经营所在国家的金融稳定和可持续发展议程做出贡献。