聚乳酸 (PLA) 是 3D 打印工艺中常用的材料。在材料挤出 (MEX) 技术中,最终的 3D 打印部件具有较低的机械性能。本研究的目的是研究经过退火的 3D 打印 PLA 样品的拉伸强度。考虑的变量是退火温度和退火时间,有三个温度水平:70 ℃ 、90 ℃ 和 110 ℃ ,以及两个退火时间:60 和 90 分钟。冷却速度设定为每小时 10 C,并在炉中冷却 24 小时。结果表明,退火显著影响拉伸强度,与未退火部件相比,退火部件的拉伸强度显著提高。与未经过退火的部件的拉伸强度值相比,退火部件表现出更高的拉伸强度。弹性模量趋于下降,工件尺寸在各个方向上略有收缩。在对患有足下垂的儿童踝足矫形器(AFO)进行退火实验的结果中发现,经过退火处理的踝足矫形器样品在各个方向上均有收缩,变化相对较小。当使用退火工件时,无需补偿工件尺寸。在 110 C 温度下进行 90 分钟的退火时,可获得最高的拉伸强度。与打印样品相比,退火样品的拉伸强度平均提高了 42%。该玻璃化转变温度越高,热值越高,这将影响塑料链的排列和结晶度,并导致其物理性质发生变化。此外,研究结果表明,通过选择理想的工艺参数和后处理条件,可以大大提高热塑性材料的优化拉伸强度。
量子退火是一种量子计算方法,可作为通用量子计算的替代方案。但是,密码学界目前并不认为量子退火对密码算法构成重大威胁。最近的研究表明,量子退火可用于流密码的有效密码分析。此外,尽管需要进行额外的分析,但使用量子退火进行密码分析似乎只需要相对较少的资源,这表明它具有实际适用性。这与 Grover 算法形成鲜明对比,后者需要具有相当深度的量子电路和数十亿个量子门。本文将探讨如果不认真对待量子退火的影响,潜在的网络安全风险。
德克萨斯大学奥斯汀分校微电子研究中心,美国德克萨斯州奥斯汀 78758 电话:(512) 471-1627,传真:(512) 471-5625,电子邮件:k-onishi@mail.utexas.edu 摘要 研究了合成气体 (FG) 退火对 HfO 2 MOSFET 性能的影响。结果表明,高温 (500-600°C) FG 退火可显著改善 N 和 PMOSFET 的载流子迁移率和亚阈值斜率。这种改善与界面态密度的降低有关。还在 HfO 2 沉积之前用 NH 3 或 NO 退火进行表面处理的样品上检查了 FG 退火的有效性。结果发现,FG 退火不会降低 PMOS 负偏置温度不稳定性特性。
有机-无机金属卤化物钙钛矿正在迅速接近最先进的硅太阳能电池,性能最佳的设备现在已达到 25.7% 的能量转换效率 (PCE)。[1] 尽管稳定性仍然是钙钛矿太阳能电池 (PSC) 面临的挑战,但它们的溶液加工性是一大优势。刮刀涂布、[2] 狭缝模头涂布 [3] 和喷涂 [4] 等技术与卷对卷 (R2R) 加工兼容,原则上,这应该可以实现比现有硅太阳能技术高得多的生产速度。然而,用于结晶钙钛矿活性层的漫长退火时间降低了实际制造过程中可以达到的最大理论网速。2020 年,Rolston 等人展示了所有可扩展 PSC 加工技术中最高的涂层速度,实现了 > 12 m min −1 的生产速度。 [5] 喷涂工艺与大气等离子体后处理工艺相结合,[6] 制备出的 PSC 器件和模块的 PCE 分别为 18% 和 15.5%。至关重要的是,它们是在不对钙钛矿层进行退火的情况下制造的。在这种速度下,模块成本预计可以与 Si 完全竞争。[7] 相比之下,经过 10 分钟退火的旋涂 PSC 的计算吞吐率仅为 0.017 m min −1 ;这个速率远远超出了商业化要求。此外,高温处理步骤会增加公用设施成本并降低吞吐率,从而增加了器件制造成本。[8] 高工艺温度也与许多敏感的柔性(聚合物)基板不兼容,而这些基板预计在“物联网”应用中非常重要。[9,10] 这个不断增长的市场预计将使钙钛矿的初始投资和市场进入门槛降低一个数量级。[11]
在上一个讲座中,我们解释了具有L噪声水平的退火Langevin算法的想法。当噪声水平的数量趋向于无穷大时,我们本质上以不断增长的噪声水平扰动数据分布。首先研究退火的Langevin算法的连续类似物的收敛是很自然的,这是一个连续的时间随机过程。特别是,我们专注于[SSDK + 20]的脱氧扩散概率建模。它具有一个正向过程,该过程会生成扰动的数据分布,而反向过程将噪声转化为µ的新样本。与[CCL + 22]中的符号一致,我们同时使用Q:= µ和µ进行目标度量,以及x 1,。。。,x n用于I.I.D.Q的样品。Q的样品。
氧化锌薄膜在室温下通过电子束蒸发在玻璃基板上生长,然后在不同温度下在250至550 c的不同温度下退火压力600 mbar退火。薄膜的电气,光学和结构特性,例如电阻率,光透射率,带隙和晶粒尺寸,这是退火温度的函数。X射线衍射表明,最大强度峰对应于(002)在各种温度下退火的ZnoFILM的主要方向。最大宽度的全宽度,在退火处理后减少,这证明了晶体质量的改善。扫描电子显微镜图像表明,通过增加退火温度,晶粒尺寸变得更大,并且该结果与X射线衍射分析一致。由Elsevier Ltd.
在硅中产生荧光缺陷是确保量子光子设备进入现有技术的关键垫脚石。在这里,我们证明了飞秒激光退火的创建,该创建的W and g-Centers in Commercial Silicon上的绝缘体(SOI)先前植入了12 C +离子。它们的质量与使用常规植入过程获得的相同发射器相媲美;通过光致发光辐射寿命来量化,其零孔线(ZPL)的拓宽以及这些定量随温度的进化。除此之外,我们还表明,这两个缺陷都可以在没有碳植入的情况下创建,并且我们可以在增强W-Centers Emision的同时退火来消除G-Centers。这些演示与硅在硅中的确定性和操作生成有关。
摘要。本研究探讨了量子方法在解决物流领域组合优化问题方面的有效性。特别是,我们专注于两级设施选址问题,该问题已知是 NP 难问题,因此无法在多项式时间内解决。由于解决这些问题很困难,我们探索了使用 D-Wave 求解器解决量子无约束二元优化公式的量子退火技术的潜力。此外,鉴于该公式对于大型实例仍然表现不佳,我们提出了一种预处理物流网络的方法。该方法的开发目的是减小物流网络的规模,从而随着实例规模的增加而提高系统性能。我们通过执行计算实验证明了我们提出的解决方案的有效性。这些实验的目的是使用我们的预处理网络技术验证量子退火的性能。
量子退火是解决组合优化问题的一种方法,其中量子闪烁是由横向场诱导的。最近,将基于分叉的量子退火与自旋-1颗粒一起退火为实施量子退火的另一种机制。在基于分叉的量子退火中,每种自旋均以| 0⟩,让这个状态以绝热的方式与时间有关的哈密顿量演变,我们发现了|在进化结束时±1⟩。在这里,我们提出了一种通过基于分叉的量子退火来在自旋-1颗粒之间生成多部分纠缠的方案,即GHz状态。,我们逐渐减少自旋1颗粒的失沟,同时绝热地改变外部驾驶场的幅度。由于自旋-1颗粒之间的偶极 - 偶极相互作用,我们可以在执行此协议后准备GHz状态。我们通过使用钻石中的氮空位中心讨论我们计划的可能实现。