强相互作用模型通常具有比能级一对一映射更微妙的“对偶性”。这些映射可以是不可逆的,正如 Kramers 和 Wannier 的典型例子所表明的那样。我们分析了 XXZ 自旋链和其他三个模型共有的代数结构:每平方梯子上有一个粒子的里德堡阻塞玻色子、三态反铁磁体和两个以之字形耦合的伊辛链。该结构在四个模型之间产生不可逆映射,同时还保证所有模型都是可积的。我们利用来自融合类别的拓扑缺陷和 orbifold 构造的格子版本明确地构建这些映射,并使用它们给出描述其临界区域的明确共形场论配分函数。里德伯阶梯和伊辛阶梯还具有有趣的不可逆对称性,前者中一个对称性的自发破坏会导致不寻常的基态简并。
基于流量的生成模型已经证明了广泛的数据模式(例如图像和文本)的有希望的性能。但是,很少有工作探索其扩展到无序数据(例如,空间点集),这并不是很微不足道,因为以前的模型主要是为自然订购的向量数据设计的。在本文中,我们提出了无序的流,这是一种基于流程的基于设定数据生成的生成模型。具体来说,我们将未订购的数据转换为适当的函数代表,并通过功能值流量匹配来了解此类表示的概率度量。对于从函数表示到未排序数据的逆映射,我们提出了一种类似于粒子过滤的方法,Langevin Dynamics首先要热身初始粒子和基于梯度的搜索,以更新它们直至结合。我们已经在多个现实世界数据集上进行了广泛的实验,这表明我们的无序流模型在生成集合结构化数据方面非常有效,并且显着胜过先前的基线。
对抗性机器学习 (ML) 的最新研究工作已经调查了问题空间攻击,重点关注在与图像不同、没有明确的特征空间逆映射的领域(例如软件)中生成真实的规避对象。然而,问题空间攻击的设计、比较和现实影响仍未得到充分探索。本文做出了三个主要贡献。首先,我们提出了问题空间中对抗性 ML 规避攻击的一般形式化,其中包括对可用转换、保留语义、缺失伪影和合理性的全面约束集的定义。我们阐明了特征空间和问题空间之间的关系,并引入了副作用特征的概念作为逆特征映射问题的副产品。这使我们能够定义并证明问题空间攻击存在的必要和充分条件。其次,基于我们的一般形式化,我们提出了一种针对 Android 恶意软件的新型问题空间攻击,该攻击克服了过去在语义和伪影方面的限制。我们已经在包含 2016 年和 2018 年的 15 万个 Android 应用程序的数据集上测试了我们的方法,结果表明逃避最先进的恶意软件分类器及其强化版本的实际可行性。第三,我们探索对抗性训练作为一种可能方法来增强对抗性样本的鲁棒性的有效性,评估其在不同场景下对所考虑的机器学习模型的有效性。我们的结果表明,“对抗性恶意软件即服务”是一种现实威胁,因为我们会自动大规模生成数千个真实且不显眼的对抗性应用程序,平均只需几分钟即可生成一个对抗性实例。
摘要:电垂直起飞和着陆(EVTOL)飞机代表了一种关键的航空技术,以改变未来的运输系统。EVTOL飞机的独特特征包括降低噪声,低污染物的发射,有效的操作成本和灵活的可操作性,同时,这对先进的电力保留技术构成了关键的挑战。因此,由于EVTOL起飞过程中的巨大功率需求,最佳起飞轨迹设计至关重要。传统的设计优化,但是,以迭代方式采用高保真模拟模型,从而产生了计算密集型机制。在这项工作中,我们实施了一个支持替代物的倒数映射优化体系结构,即直接预测设计要求(包括飞行条件和设计约束)的最佳设计。经过训练的逆映射替代物执行实时最佳EVTOL起飞轨迹预测,而无需运行优化;但是,一个培训样本需要在此反映射设置中进行一个设计优化。反向映射的过度训练成本和最佳EVTOL起飞轨迹的特征需要开发回归生成的对抗网络(Reggan)代理。我们建议通过转移学习(TL)技术进一步增强Reggan的预测性能,从而创建一种称为Reggan-TL的方案。在这项工作中,发电机采用设计要求作为输入并产生最佳的起飞轨迹配置文件,而歧视器则在培训集中区分了生成的配置文件和真正的最佳配置文件。尤其是,提议的核根方案利用了由发电机网络和鉴别器网络组成的生成对抗网络(GAN)架构,并具有均一平方误差(MSE)和二进制跨透镜(BC)的组合损失,用于回归任务。综合损失有助于双重方面的发电机培训:MSE损失目标是生成的概况和培训对应物之间的最小差异,而BC损失则驱动了生成的配置文件,以与训练集共享类似模式。我们证明了Reggan-TL在空中客车A 3 Vahana的最佳起飞轨迹设计上的实用性,并将其与代表性替代物的性能进行了比较,包括多输出高斯工艺,条件gan和Vanilla Reggan。结果表明,Reggan-TL仅使用200个训练样本,而最佳参考替代物需要400个样本,达到了99.5%的概括精度阈值。培训费用减少了50%,降低了Reggan-TL实现的概括准确性的标准偏差,证实了其出色的预测性能和广泛的工程应用潜力。