被执行,并且除了在条件跳转指令执行期间之外,在每个指令周期结束时加一。在步骤 1 期间,控制计数器操作存储器选择电路,并且在步骤 1 结束时,包含下一条指令的指定存储器字被读入静态寄存器。两个左边的位被解码为操作,并且该信息被发送到功能选择电路,在那里,结合步进计数器和时钟信号,生成所有指令所需的门控脉冲。两个右边的位指定操作数地址,被发送到存储器选择电路,允许读出所需的数据字。所有这些都发生在步骤 1 期间。实际的指令执行在最后三个步骤中的一些或全部期间进行。
本文旨在详细研究非反相降压-升压转换器的评估和特性。为了改善降压-升压转换器在三种工作模式下的行为,我们提出了一种基于峰值电流控制的架构。使用三模式选择电路和软启动电路,该转换器能够扩大功率转换效率并减少反馈回路的浪涌电流。建议的转换器设计为以可变输出电压运行。此外,我们使用导通电阻低的 LDMOS 晶体管,这适用于 HV 应用。结果表明,与其他架构相比,所提出的降压 - 升压转换器的性能更完美,并且它使用 0.18 µ m CMOS TSMC 技术成功实现,输出电压调节为 12 V,输入电压范围为 4-20 V。在负载电流为 4 A 时,降压、升压和降压-升压三种工作模式的功率转换效率分别为 97.6%、96.3% 和 95.5%。