通过开放式电池设计将阴极与空气连接起来的必要性与开发挑战有关。首先,锂金属与水反应剧烈,因此需要非水电解质。此外,需要通过透气但防水的膜和阳极侧的无水电解质来避免潮湿。因此,大多数研究都是在完全非水系统上进行的,其中有机电解质用于阳极和阴极侧。然而,有机电解质面临着自身的挑战。由于大多数气体扩散电极 (GDE) 针对水基电解质进行了优化,并使用聚四氟乙烯 (PTFE) 作为非润湿/疏水粘合剂,因此了解有机电解质如何与这些 GDE 相互作用是必要的。多孔系统内的非润湿区域对于提供存在气体、电解质和活性材料的多个三相接触点至关重要。液体用薄膜覆盖活性区域,确保离子传输到活性位点,而非润湿区域确保气体正确传输到活性区域。图 1 显示了 PTFE 附近的水基电解质膜的示意图,以及电流密度与电极表面液膜厚度之间的关系。在 PTFE 附近,仅形成一层薄液膜,阻碍了离子传输(橙色区域)。在电解质层较厚或孔隙被淹没的另一侧,氧气向活性侧的扩散受到长扩散路径的阻碍(黄色区域)。液体中氧气扩散缓慢会导致浓度过电位增加。在这两个区域之间,离子传输和氧气扩散长度之间的最佳平衡可产生最大电流密度(绿色区域)。如果使用具有优异润湿性能的电解质,则绿色区域中的三相区域会减少,多孔系统的电化学性能会降低。最终,完全淹没的电极(几乎所有活性位点都被液体覆盖)会导致性能不佳。[2] 此问题尤其会出现在表面张力低的有机液体中。[3] Wagner 等人研究了缓慢增加电解质渗透的影响。对于碱性燃料电池,他们观察到 PTFE 分解,因此多孔系统内部疏水区域会损失。这降低了三相边界的厚度,5000 小时后电化学性能损失 12-15%
肺部疾病,例如慢性阻塞性肺部疾病,哮喘,社区获得性肺炎,囊性纤维化和COVID-19,是世界第二大死亡原因,成为了重大的健康挑战。因此,纳入纳米颗粒制剂(NP)的发育纳入了含有抗生素或抗病毒药的微粒系统(MPS),是改善这些肺部感情治疗的有前途的方法。政治丙酮酸(PCL)NP可能封装疏水性药物。因此,在这项工作中,我们开发了PCL NP,其磷脂封装了阿奇霉素(AZM)和respdivir(RDV),该溶剂通过乳液扩散蒸发而获得。nps导致在Zeta电势之间的动态光和-4.94和-5.06 eV之间的传播中,在动态光和-4.94和-5.06 eV之间的传播中,平均直径在184-208 nm和多分散性(PDI)之间,保持稳定6个月至4°C。随后,通过喷雾干燥以获得MPS干燥。喷涂干燥参数的优化导致100°C输入温度,64°C输出温度,600 L/h雾化流量,4.55 ml/min的流量和系统吸入70%,产量为63%。通过UV-VIS和HPLC光谱评估的封装效率分别为含有AZM和RDV的配方率为83%和87%。结果表明MPS是多孔球形结构,特定表面积为3.95 g/m 2。激光光衍射表明90%的颗粒为4.06和4.11 µm。粉末制剂的表征是根据形态,特定的表面积,粒径,化学结构,结晶度和扫描电子显微镜,物理学,激光衍射,红外光谱,X射线衍射和热分析的。FTIR分析表明,没有不必要的反应。衍射模式和量热测试表明,AZM和封装的RDV分散在固体聚合基质中。具有单个实习级联撞击剂的体外测试和多个阶段用于了解呼吸道不同部位的颗粒沉积,而39-42%的颗粒对应于可透气的透气分数。磁盘扩散测试表明,含有纳米封装的配方AZM对金黄色葡萄球菌和肺炎链球菌的抗菌作用保持抗菌作用,并具有抑制卤素≥18mm。HUVEC,HFF1和BEAS-2B细胞系表明含有AZM的分散体没有细胞毒性。关于含有RDV的NP,LDH细胞死亡试验表明,在感染SARS-COV-2的VERO E6细胞中使用免费或封装药物和抗病毒药测试之间没有显着差异。因此,两种含有AZM或RDV的配方都有治疗肺部疾病的潜力,并且开发的微观引血系统由一个可靠的肺部递送平台组成,也可以适用于其他抗生素和抗病毒药。