与Wi-Fi和蓝牙使用的2.4GHz频带相比,Wi-Sun使用的子GHZ带无线电波提供了几个优点。wi-sun确保距离更长,障碍物规避(更好的衍射特性)以及对其他电子设备的放射频率干扰较小。Wi-Sun Fan Fan 1.1配置文件的功能包括使用多跳通信的长距离通信,在通信路径故障期间自动网络重建,有限的功能节点(LFN)启用电池操作(超低功能操作),通过使用FSK调制的高速通信通过高速通信来实现高速操作,并使用高速通信。这个丰富的功能阵容已导致在众多物联网通信应用中使用符合Wi-Sun的设备,
摘要:动态飞行临时网络(粉丝)和毫米波(MMWave)技术的集成可以为许多数据密集型应用提供有前途的解决方案,因为它可以建立具有明显的数据传输功能的强大型号基础架构。但是,要在此动态网络中启用有效的MMWave通信,必须精确地对齐安装在无人机上的可可的天线(UAV)与相应的同行单元。因此,设计一种可以快速确定优化对齐和网络拓扑的新颖方法很重要。在本文中,我们提出了一种基于生成的对抗网络(GAN)的方法,称为Wavegan,用于粉丝拓扑优化,旨在通过在最佳的通道条件下选择通信路径来最大化网络吞吐量。所提出的方法由Wavegan模型组成,然后进行梁搜索。前者学习如何从监督数据集中生成优化的网络拓扑,而后者则调整生成的拓扑以满足基于MMWave的粉丝的结构要求。仿真结果表明,所提出的方法能够快速找到粉丝拓扑,并具有很小的最佳差距,适合不同的网络大小。
在安全多方计算(MPC)上的大多数现有工作忽略了现代通信网络的关键特质,即任何两个节点之间的通信路径数量有限,其中许多节点甚至可能被损坏。在信息理论环境中,问题变得尤为严重,在这种情况下,缺乏可信赖的设置(以及他们启用的加密原始图)使得稀疏网络上的沟通更具挑战性。Garay和Ostrovsky [eurocrypt'08]几乎每个人的MPC(AE-MPC)的作品在此类不完整的网络上引入了MPC的“最能力的安全性”属性,在此不一定会将一些诚实的政党从计算中排除。在这项工作中,我们提供了几乎每个地方的安全性的普遍组合定义,这使我们能够自动,准确地捕获AE-MPC的保证(以及AE-Communication(AE-Communication),这是Canetti的通用合并性(UC)框架中类似的“最佳安全性”安全性的“安全通信”版本)。我们的结果提供了对这个重要但不足的问题的首次基于模拟的治疗,以及第一个基于仿真的AE-MPC证明。为了实现这一目标,我们指出并证明了一般组成定理,这使得在协议的混合体被几乎每个地方的组件替换时获得了AE安全的水平或“质量”。
摘要 - 我们通过由多个连接组成的异质网络考虑了量子后安全和超可靠的通信问题。考虑了三个性能:安全性,吞吐量和订购交付延迟。在这种情况下,以前的工作单独查看了固定交付延迟与吞吐量之间以及安全性和吞吐量之间的权衡。这是考虑到异质通信网络的所有三个方面的权衡,同时考虑了计算综合性。我们提出了LL-Huncc,这是一个低延迟混合通用网络编码加密系统。ll-huncc是一种有效的编码方案,它仅通过对要发送的一小部分信息进行加密,可以通过嘈杂的不信任异质网络进行安全通信。此方案提供了高通量和较低订购延迟保证的量子后安全性。我们通过模拟评估了LL-Huncc,该设置受到了涉及涉及卫星通信链接和5G通信网络的异质通信的实用场景的启发。在这种情况下,我们将ll-huncc与最先进的方法进行了比较,其中所有通信路径均通过后量子后的公共键密码系统进行加密。
• 在印第安纳州印第安纳波利斯举行的中西部地区圆桌会议重点讨论了传统公用事业通信。在此场景中,传统系统的逻辑模型被映射到智能电网信息网络的概念域上。 • 在加利福尼亚州旧金山举行的西部地区圆桌会议重点讨论了高分布式能源架构通信。在此场景中,发电域(包括分布式能源)现在环绕输电域并与客户域重叠,客户设备积极促进系统优化。 • 在佐治亚州亚特兰大举行的东南地区圆桌会议重点讨论了微电网驱动的通信。在此场景中,主控制器成为关键的域间接口。包括客户管理和公用事业管理的微电网。 • 在罗德岛州沃里克举行的东北地区圆桌会议重点讨论了先进大电网系统的接口。这种混合公用事业通信路径场景有助于理解集中式、分布式和电网边缘系统的角色和通信。来自区域公用事业监管机构的代表确定了关键的区域特定主题,为进一步讨论提供了背景。 • 东南地区:佐治亚州是一个地理分布多样化的州,依赖核电,尽管太阳能光伏 (PV) 装置正在增长。这种增长完全由市场驱动,没有任何补贴或可再生能源组合标准,而是依靠审慎的规划
胎儿静脉系统在妊娠第六周左右开始发育,有三对静脉:脐静脉、卵黄静脉和主静脉。这些静脉对于将血液从胎盘输送到心脏至关重要。随着肝脏的成熟,肝脏和这些静脉之间的连接形成复杂的静脉系统。该过程的中断可能导致各种胎儿静脉异常,这些异常是由这些静脉的形成或退化异常引起的。常见的异常包括静脉导管发育不全、右脐静脉持续存在、脐静脉曲张、门静脉系统发育不全和下腔静脉中断。静脉导管发育不全可导致代偿性血流变化,而当左脐静脉退化时会出现右脐静脉持续存在。脐静脉曲张是脐静脉扩张,门静脉系统发育不全会扰乱正常的肝脏血流。 IVC 中断会影响全身静脉回流到心脏。诊断这些异常需要详细的超声评估,包括多普勒研究和产前监测,以评估潜在并发症并指导适当的临床治疗。在评估复杂的通信路径时,第一步是检查该结构的组织方式。静脉系统的分类分割可带来更广阔的视野和更高的感知能力。在这篇图文中,胎儿静脉系统及其异常根据其主要来源进行分类。特别注意使用彩色示意图和真实的二维和彩色超声图像描绘正常解剖结构和异常,这对促进空间感知和简化胎儿静脉系统异常的分类方法起着重要作用。
计算机的内存单元对于存储中央处理单元(CPU)需要运行程序的数据和说明至关重要。在程序运行之前,将其从某些存储介质加载到内存中,从而允许CPU直接访问。记忆的测量单元包括字节,千数,兆字节,千兆字节和trabytes。此外,由于其暂时性,计算机存储器被归类为挥发性;关闭计算机时,存储在RAM(随机访问存储器)中的数据消失。应用程序软件是指旨在执行特定任务的程序,例如文字处理或数据处理。需要将计算机的功能用于各种目的,例如绘画,录制和打字。计算机的基本体系结构围绕其逻辑结构旋转,描述了组件如何相互作用,影响其功能并促进整体性能。计算机遵循输入程序输出(IPO)原理,其中处理输入以生成特定的输出。一个输入单元包含各种设备,例如键盘,鼠标,扫描仪和麦克风,负责将输入并将其转换为计算机可靠的格式。一些常见的输入设备包括触摸屏,轨迹球和生物识别传感器。口译员翻译指令逐行,而编译器一口气翻译整个程序,从而使编译程序更快地执行。控制单元控制数据解释,流量和操作。它控制指令的解释并指导数据的处理。3。4。CPU(中央处理单元)解释操作计算机的基本说明,而Alu(算术逻辑单元)执行算术,比较和逻辑操作。主要区别在于其功能:CPU处理指令,而Alu执行数学和逻辑任务。输出单元的功能是通过视觉响应(显示器),声音(扬声器)或媒体设备(CD/DVD驱动器)将计算机的响应转化为用户的可用形式。系统软件的主要功能是管理系统中的所有资源。一个例子是一个操作系统。但是,关于CPU的角色及其亚基的问题。中央处理单元(CPU)通过执行程序中的说明充当计算机的大脑。它执行基本的算术,逻辑和输入/输出操作。CPU可以称为中央处理器单元,也可以简单地称为处理器。其关键组件包括: - 控制单元 - 算术和逻辑单元(ALU) - 内存单元相比之下,RAM(随机访问存储器)是一种挥发性存储介质,需要恒定的功率保留数据,而ROM(仅读取存储器)是非挥发性的。两者都被视为主要内存,因为它们直接与CPU相互作用。ROM类型包括: - 仅读取内存(ROM) - 可编程仅读取内存(PROM) - 可擦除的可编程仅读取内存(EPROM) - 可擦除的可编程可编程仅读取内存(EEPROM)内部内存通常由附属于主板附加的芯片或模块,而外部内存包括USB闪光灯驱动器和光盘盘和光盘。5。移动系统的主要功能组件包括:1。**移动处理:** - 通信处理单元 - 应用程序处理单元 - GPU(图形处理单元)2。**芯片上的系统(SOC):**将多个组件组合到一个芯片中。**显示子系统:**由显示屏幕,触摸敏感接口和触摸敏感键盘组成。**相机子系统:**捕获图像和视频。**移动系统存储器:** - RAM -ROM 6。**存储:**长期保存数据。7。**电源管理子系统:**调节功耗。通信处理器通过与RF收发器和音频子系统合作利用数字信号处理器在移动设备上管理电话。软件库是可以在软件开发中重复使用的预编写代码的集合。Python库包括:1。numpy(数值python)2。scipy(科学python)3。pandas图书馆公用事业软件通过提供诸如备份,恢复和性能增强之类的服务来提高系统效率和用户体验,从而发挥关键作用。操作系统管理资源,为用户提供接口,并在应用程序之前安装。它处理内存,处理,存储等。没有软件,硬件将无法运行。诸如防病毒软件之类的实用程序可以帮助您完成备份数据和扫描病毒的任务。他们协助计算机执行基本的管家功能。它提供了两个主要服务:内存管理和设备管理。图形处理单元(GPU)通过处理视觉效果和图形丰富的应用程序来帮助CPU,使其对需要有效图形处理的移动设备有用。电源管理单元在移动系统中至关重要,通过连接的电池单元为设备提供电源,同时还管理电池充电,监视和提供不同组件所需的各种电压。它具有软件控制的转机和关闭功能,可优化功耗并延长电池寿命。磁盘片段(例如磁盘片段)的软件实用程序通过将大文件分成较小的零件以更快地访问来帮助管理存储在计算机硬盘驱动器上的文件。备份软件有助于创建重复的数据副本,从而使用户在损坏或数据丢失的情况下恢复丢失的信息。计算机系统由四个物理组件组成:CPU,主内存,输入设备和输出设备。这些组件被称为硬件,它与软件一起工作以产生所需的输出。主内存分为挥发性(RAM)和非挥发性(ROM)类型,系统总线将数据,地址和控制信号传输到计算机组件之间。微处理器在计算机内执行基本算术操作,而微控制器在单个芯片上集成了CPU,RAM,ROM和其他外围设备,从而使紧凑的计算设备能够。软件分为系统软件,编程工具和应用程序软件,这些软件共同促进了任务并为计算机硬件提供功能。CPU由算术逻辑单元(ALU)和控制单元(CU)组成。操作系统充当用户和计算机之间的接口,通过监视和控制硬件和软件来监督计算机系统的功能。计算机功能所需的软件是操作系统(OS),该软件促进了机器可以在语言翻译器(编译器或口译员)的帮助下理解的高级语言编程。用汇编或高级语言编写的源代码转换为可理解的机器形式称为机器(对象)代码,从而减少了执行时间。RAM用于在处理过程中临时存储数据,而辅助存储器将数据,说明和结果永久存储以供将来使用。计算机组件通过总线进行通信,该总线有三种类型:数据总线,地址总线和控制总线。计算机系统主要包括中央处理单元(CPU),内存,输入/输出设备和存储设备。ALU执行算术和逻辑操作,而控制单元控制指令执行序列。输入设备将数据/信号发送到计算机,输出设备接收和显示数据,而存储设备存储数据进行处理。系统总线或总线提供了计算机系统组件之间的通信路径,从而使数据总线上的双向数据传输和地址总线上的单向地址信息传输。访问特定的内存点,无论是检索信息还是存储新数据。(注意:我随机选择“添加拼写错误(SE)”方法并将其应用于文本。)