1 研讨会于 2023 年 7 月在阿姆斯特丹大学举行。更全面的建议版本将在即将发表的文章中发表。我们感谢各位参与者在研讨会期间和之后的宝贵意见(参加研讨会并不等于认可下文列出的所有建议):Bettina Berendt 博士(柏林工业大学互联网与社会教授)、Ian Brown 博士(里约热内卢热图利奥·瓦尔加斯基金会法学院技术与社会中心客座教授、顾问)、Nick Diakopoulos 博士(西北大学传播学和计算机科学教授(特聘))、Tim de Jonge(拉德堡德大学博士候选人)、Christina Elmer(多特蒙德大学数字新闻/数据新闻教授)、Natali Helberger 博士(阿姆斯特丹大学杰出法学与数字技术大学教授)、Clara Helming(AlgorithmWatch 高级政策与宣传经理)、Karolina Iwańska(欧洲非营利组织中心数字公民空间顾问)法)、Frauke Kreuter 博士(慕尼黑大学统计与数据科学教授)、Laurens Naudts 博士(阿姆斯特丹大学法学博士后研究员)、Liliane Obrecht(巴塞尔大学法学博士生)、des 博士。 Angela Müller(AlgorithmWatch 政策与宣传主管)、Estelle Pannatier(AlgorithmWatch CH 政策与宣传经理)、Stanislaw Piasecki 博士(阿姆斯特丹大学法学博士后研究员)、João Quintais 博士(阿姆斯特丹大学信息法助理教授)、Matthias Spielkamp(AlgorithmWatch 创始人兼执行董事)、Daniel Oberski 博士(乌得勒支大学健康数据科学教授)、Ot van Daalen 博士(律师;阿姆斯特丹大学信息法讲师和研究员)、Kilian Vieth-Ditlmann(AlgorithmWatch 政策与宣传副团队负责人)、Sophie Weerts 博士(洛桑大学公法副教授)、Frederik Zuiderveen Borgesius 博士(拉德堡德大学 ICT 和法律教授)。此外,我们感谢以下专家对研讨会成果的宝贵书面反馈:Nikolett Aszódi(AlgorithmWatch 政策与宣传经理)、Paul Keller(Open Future 政策总监)和 Alex Tarkowski(Open Future 战略总监)。
1译者注:中文术语可以将英语翻译成“人工通用情报”(AGI)或“通用人工智能”(简称“通用AI”)。这种翻译选择“通用AI”,因为当中国作家使用该术语通用人工智能时,通常是指广泛的AI形式,而不是像Agi所暗示的那样类似于人类认知的AI。有关此术语的更全面讨论,请参见Wm。C. Hannas,Huey-Meei Chang,Daniel H. Chou和Brian Fleeger,“中国的高级AI研究:监视中国通往“一般'人工智能的途径”,“人工智能中心”,“安全与新兴技术中心”,2022年7月7日,2022年,HTTPS://CSET.GEORGETONTOWN.GEORGETOWN.GEORGETONTOWN.EDUE/PUBLITICA/CHINAS-CUBUBLICATION/CHINAS-EREVENG 1-3。1-3。
对于医学图像分割,想象一下如果一个模型仅使用源域中的 MRI 图像进行训练,那么它在目标域中直接分割 CT 图像的性能如何?这种设置,即具有临床潜力的通用跨模态分割,比其他相关设置(例如域自适应)更具挑战性。为了实现这一目标,我们在本文中提出了一种新颖的双重规范化模型,该模型在通用分割过程中利用增强的源相似和源不相似图像。具体而言,给定一个源域,旨在模拟看不见的目标域中可能的外观变化,我们首先利用非线性变换来增强源相似和源不相似图像。然后,为了充分利用这两种类型的增强,我们提出的基于双重规范化的模型采用共享主干但独立的批量规范化层进行单独规范化。随后,我们提出了一种基于风格的选择方案,在测试阶段自动选择合适的路径。在三个公开数据集(即 BraTS、跨模态心脏和腹部多器官数据集)上进行的大量实验表明,我们的方法优于其他最先进的领域泛化方法。代码可在 https://github.com/zzzqzhou/Dual-Normalization 获得。
在发布一般或特定关税令时,委员会可考虑针对每种新型和可再生能源制定适当的标准/程序/参数/费用,涉及以下问题:新型和可再生能源发电厂向配电许可证持有者出售电力、自用电力和向第三方出售电力。
本文分析了实现 AGI 的不同方法,包括人脑模拟、AIXI 和集成认知架构。首先,本文定义了 AGI,并说明了其要求。对于提到的每种提议方法,都总结了相关方法,并详细介绍了其关键流程,展示了其运作方式。然后,分析了列出的每种方法,并考虑了各种因素,例如技术要求、计算能力和对要求的充分性。结论是,虽然有多种方法可以实现 AGI,例如人脑模拟和集成认知架构,但实现 AGI 最有希望的方法是集成认知架构。这是因为发现人脑模拟需要扫描技术,而这些技术很可能要到 2030 年代才能实现,因此不太可能在那之前创建出来。此外,集成认知架构降低了计算要求,并具有适合通用智能的功能,使其成为实现 AGI 的最有可能的方法。
临床成像工作流的主要重点是疾病诊断和管理,导致医学成像数据集与特定的临床目标密切相关。这种情况导致了开发特定于任务的分割模型的主要实践,而没有从广泛的成像群中获得见解。受到医学放射学居民培训计划的启发,我们提出了向普遍医学图像分割的转变,旨在通过利用临床目标,身体区域和成像方式的多样性和共同点来建立医学图像理解基础模型的范式。div of这个目标,我们开发了爱马仕,一种新颖的上下文 - 学习方法,以应对医学图像segmentation中数据杂基的挑战和注释差异。在五种模式(CT,PET,T1,T2和Cine MRI)和多个身体区域的大量各种数据集(2,438个3D图像)中,我们证明了通用范式比传统范式在单个模型中解决多个任务的传统范式的优点。通过跨任务的协同作用,爱马仕在所有测试数据集中都能达到最先进的性能,并显示出卓越的模型可伸缩性。其他两个数据集中的结果揭示了爱马仕在转移学习,分裂学习和对下游任务的概括方面的出色表现。爱马仕(Hermes)博学的先生展示了一个具有吸引力的特征,以反映任务和方式之间的复杂关系,这与既定的放射学解剖学和成像原则相吻合。代码可用1。
通用缩放定律控制跨越平衡连续相变时产生的拓扑缺陷的密度。kibble-zurek机制(KZM)预测了缓慢淬火的淬火时间的依赖性。相比之下,对于快速淬火,缺陷密度以淬火的幅度普遍尺度。我们表明,通用缩放定律适用于由振荡外部场驱动的动态相变。系统对周期电势场的能量响应的差异导致能量吸收,对称性的自发断裂及其恢复。我们验证了相关的通用缩放定律,提供了证据表明,可以通过与KZM结合的时间平均临界指数来描述非平衡相变的关键行为。我们的结果表明,临界动力学的普遍性超出了平衡关键性,从而促进了对复杂非平衡系统的理解。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
