自计算机出现以来,人类一直在寻求富有表现力、直观且通用的计算机输入技术。虽然已经开发了多种模式,包括键盘、鼠标和触摸屏,但它们需要与中间设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统利用摄像头或惯性传感器来避免使用中间设备,但它们往往只在不被遮挡或明显的动作中表现良好。几十年来,人们一直在设想脑机接口 (BCI),通过允许仅通过思维向计算机输入来解决接口问题。然而,高带宽通信仅使用为单个个体设计的解码器的侵入式 BCI 进行了演示,因此无法扩展到普通大众。相比之下,肌肉中的神经运动信号可以访问细微的手势和力量信息。在这里,我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高度灵敏且强大的硬件平台,该平台易于佩戴/脱下,可感知手腕上的肌电活动并将有意的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,该基础设施可从数千名同意的参与者那里收集训练数据,这使我们能够开发通用的 sEMG 神经网络解码模型,该模型适用于许多人,而无需对每个人进行校准。未包括在训练集中的测试用户在连续导航任务中以每秒 0.5 次目标获取、在离散手势任务中以每秒 0.9 次手势检测和每分钟 17.0 个调整字的速度展示手势解码的闭环中值性能。我们证明,通过为个人个性化 sEMG 解码模型,输入带宽可以进一步提高 30%,预计未来人类和机器将共同适应,提供无缝翻译人类意图的功能。据我们所知,这是第一个直接利用生物信号的高带宽神经运动接口,具有跨人群的高性能开箱即用泛化功能。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
背景和目标:乔丹由于其干旱的气候和人口密度高而面临水资源挑战。这项研究选择了Zarqa河流域的一般循环模型,以在四个时期的共享社会经济途径2-4.5和5-8.5方面投射未来的温度变化:2015-2040,2041-2060,2061-2060,2061-2080,以及2081-2100,评估气候对水资源的影响。方法:统计缩减模型促进了在四个不同的时间范围内两种共享社会经济途径的温度波动的投影。该模型的预测因子来自一般循环模型和重新分析数据集。结果表明,Zarqa河盆地温度与选定的一般循环模型之间存在很强的相关性。在校准期(1983-2000)和验证期(2001-2014)期间,该模型准确地反映了温度特征。对扎尔卡河盆地内六个站进行了预测。发现:在选定的一般循环模型中,联合Kingdm地球系统建模项目和Hadley Center全球环境模型3 - 全球耦合配置3.1预测温度最快的升高。高发射方案(共享社会经济途径5-8.5)预测温度的上升比低发射方案(共享的社会经济途径2-4.5)。的预测表明,扎卡河盆地的北部将比南部地区进行更大的变暖,而2090年代相对于2050年代,预期的会大幅度增加。最低温度在最高温度速率的两倍上升高。到2100年,共享社会经济途径中的最高温度预计将在3.44-4.91摄氏度上升高,而在共享的社会经济途径5-8.5方案中,增加将增加5.5-6.2摄氏度。结论:该研究成功地开发了一个在共享的社会经济途径的情况下,为Zarqa河流域中未来温度预测的统计缩减模型。分析表明,扎尔卡河流域预计会经历以较高温度和降水降低的气候,而二十一世纪后期预期的温度显着升高。这些发现可能会为区域水文和环境建模提供宝贵的见解,并有助于评估生态系统可持续性。
通用许可证可用于常规替换合法现有的功能性舱壁,包括回报和平行封盖木板路,通过重新分解木板,导致不超过4英寸的海上扩展或瓦楞纸材料,或者不超过8英寸的海上延伸,或替换了现有结构的范围或替换。新的一般许可证还将允许高于现有结构高度高达18英寸的高度,并且还可以增加当地指定的联邦紧急事务管理机构(FEMA)洪水高程,或使用适用的DEC社区风险和弹性法案(CRRA)指南确定的高程。可以拆除附着在舱壁上的系泊和海滩通道结构,并以实物和地位更换。重建的舱壁可能会关闭脚步下降,并用木材,混凝土或其他人造材料建造的船坡道。维护挖泥到-4'MLLW的舱壁上10'以舱壁和小溪为单位。在开放式海湾和河流方面,挖泥更受限制,仅限于5'海上“恢复”挖泥,并且受到一年中禁止保护鳍鱼和/或产卵贝类的禁令的限制。重要的排除可能包括DEC认为非功能性的舱壁和DEC认为存在合理替代品的站点,例如较软的海岸线稳定选择。可能需要作为标准的潮汐湿地应用程序处理被认为不符合覆盖范围的项目,并且可能需要其他信息,例如替代性分析。
研究完整性通过我们的质量和客观性的核心价值以及我们对最高诚信和道德行为水平的坚定承诺来帮助通过研究和分析来帮助改善政策和决策的使命。为了帮助确保我们的研究和分析是严格,客观和无党派的,我们将研究出版物进行稳健而严格的质量保证过程;通过员工培训,项目筛查以及强制性披露政策,避免财务和其他利益冲突的外观和现实;并通过对我们的研究发现和建议的公开出版,披露已发表研究的资金来源以及确保智力独立性的政策来追求我们的研究参与的透明度。有关更多信息,请访问www.rand.org/about/research-integrity。
自计算机出现以来,人类一直在寻求富有表现力、直观且通用的计算机输入技术。虽然已经开发了多种模式,包括键盘、鼠标和触摸屏,但它们需要与中间设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统利用摄像头或惯性传感器来避免使用中间设备,但它们往往只在不被遮挡或明显的动作中表现良好。几十年来,人们一直在设想脑机接口 (BCI),通过允许仅通过思维向计算机输入来解决接口问题。然而,高带宽通信仅使用为单个个体设计的解码器的侵入式 BCI 进行了演示,因此无法扩展到普通大众。相比之下,肌肉中的神经运动信号可以访问细微的手势和力量信息。在这里,我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高度灵敏且强大的硬件平台,该平台易于佩戴/脱下,可感知手腕上的肌电活动并将有意的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,该基础设施可从数千名同意的参与者那里收集训练数据,这使我们能够开发通用的 sEMG 神经网络解码模型,该模型适用于许多人,而无需对每个人进行校准。未包括在训练集中的测试用户在连续导航任务中以每秒 0.5 次目标获取、在离散手势任务中以每秒 0.9 次手势检测和每分钟 17.0 个调整字的速度展示手势解码的闭环中值性能。我们证明,通过为个人个性化 sEMG 解码模型,输入带宽可以进一步提高 30%,预计未来人类和机器将共同适应,提供无缝翻译人类意图的功能。据我们所知,这是第一个直接利用生物信号的高带宽神经运动接口,具有跨人群的高性能开箱即用泛化功能。
保护功能 相过流 50/51 方向相过流 67 接地故障过流 50N/51N 方向接地故障 67N 瞬时接地故障 67NI 电容器组不平衡 51C 断线 46 I2/I1 冷负荷启动 H2 检测 68H2 H5 检测 68H5 冷负荷启动 59 断路器故障 50BF 开关闭合至故障 (SOTF) 方向有功功率不足 37P 故障定位器 21FL 重合闸 79 相欠流 37 启动时间过长,转子堵转 48/51LR 电机重启抑制 66 电容器过压 59C 负序过流 46 开关闭合至故障 (SOTF) 50/51 过压 59 欠压 27 正序欠压 27P 接地故障过压 59N 欠频 81/81N 频率变化率 81R同步检查 25 闭锁继电器 86 CT 监控 60 VT 监控 60 可编程阶段 99 8 可编程曲线
此目录适用于位于美国佛罗里达州的Nuc Univer University South Florida校园。nuc大学 - 南佛罗里达州校园https://online.nuc.edu/en/about-us/laticies/policies/plocies/pit Catalog适用于适用于Puerto Rico和在线部门的NUC大学位置的目录,请访问以下URL:美国/政策/#目录,https://tecnicos.nuc.edu/politicas/#catalogo。For catalogs applicable to other locations of NUC University located in FL please access the following URLs: NUC University – Florida Technical College https://www.ftccollege.edu/student- information/#catalog The Digital Animation & Visual Effects (DAVE) School https://dave.nuc.edu/student-consumer- information/#Dave-Catalog The print version of this catalog可以在机构的任何位置要求。©版权所有2025,Nuc University