突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
肝细胞癌(HCC)具有较高的致死率和致残率,严重危害人类的生命。化学药物和化疗药物在HCC治疗中一直存在副作用、耐药性等问题,不能满足临床治疗的需要。因此寻找新型低毒高效的抗肝细胞癌药物并探究其作用机制成为当前HCC治疗中亟待解决的问题。已有多项研究报道了inotodiol的抗癌作用,本研究针对inotodiol在HCC细胞中的抗癌作用及其分子机制,旨在深入探究其抗癌作用。采用CCK8实验检测细胞存活率,划痕实验检测细胞迁移能力,克隆形成实验检测克隆形成能力,流式细胞术分析细胞凋亡和细胞周期。通过动物实验验证inotodiol对HCC的抑制作用。同时采用western blotting检测凋亡、细胞周期及MAPK/ERK通路相关蛋白。结果表明inotodiol具有促进细胞凋亡、抑制细胞增殖、迁移和克隆形成的能力,当CDK2、CDK4、CDK6和Cyclin D的表达受到抑制时,细胞周期被阻滞在G1期。此外,inotodiol表现出诱导细胞凋亡的作用,其特点是Bax表达增加,Bcl-2、Bcl-XL和MCL1表达减少,PARP1和caspase 3的剪切启动,以及MAPK/ERK通路的抑制。动物实验表明inotodiol具有抑制裸鼠肿瘤生长的能力,同时对小鼠的体重和脏器无明显影响。总之,本文提出的研究结果有力地表明,inotodiol 可以成为治疗肝细胞癌 (HCC) 的有希望的候选药物。
癌症免疫力是指免疫系统识别和消除体内癌细胞的强大能力。这种复杂的防御机制涉及各种类型的免疫细胞,包括 T 细胞和自然杀伤细胞。这些细胞共同作用,识别可能导致肿瘤形成的异常细胞,从而保护身体免受癌症进展。通过有效区分健康细胞和有害细胞,免疫系统在维持整体健康和防止癌症扩散方面发挥着至关重要的作用 ( 1 )。这一过程至关重要,因为癌细胞可以从正常细胞发展而来,并可能找到逃避免疫反应的方法。了解和增强癌症免疫力对于癌症研究和治疗至关重要,因为这些努力可以带来更有效的治疗方法和更好的患者结果。免疫疗法正逐渐被认可为治疗各种类型癌症的重要方法。这种方法包括创新技术,例如免疫检查点抑制剂和 CAR-T 细胞疗法,它们使人体免疫系统能够更有效地对抗癌症。然而,一个关键挑战是优化这些治疗方法以适应更广泛的患者和各种肿瘤类型 ( 2 )。研究人员强调肿瘤微环境——癌性肿瘤周围的区域,可影响治疗效果。该环境的一个关键组成部分是腺苷信号传导。肿瘤可以操纵该通路来欺骗免疫系统,阻止其发起攻击。因此,针对腺苷信号传导有望改善癌症治疗( 3 , 4 )。
着丝粒缺陷、染色体不稳定性和伴随的 cGAS-STING 通路激活与纤维化标志物增加相关,表明 cGAS-STING 通路与人类疾病的免疫调节有关(Paul 等人,2022 年;Contreras-Galindo 等人,2023 年)。该研究课题促进了对人类疾病中 cGAS-STING 通路激活的多学科理解。此外,它旨在强调 cGAS-STING 调节剂的进展,为治疗自身免疫性疾病和癌症的药物研发工作做出贡献。环鸟苷酸环化酶 (cGAS) 对核外 DNA(无论是自身的还是外来的)的检测在人类健康中起着至关重要的作用(Dvorkin 等人,2024 年)。当 cGAS 与核外 DNA 结合时,它会刺激第二信使环磷酸鸟苷 (cGMP) 的产生,从而激活干扰素基因刺激物 (STING)。STING 激活会触发各种细胞反应,包括干扰素调节因子 3 (IRF3) 的激活和干扰素的释放 (Hopfner and Hornung,2020 年)。cGAS-STING 通路激活可导致多种结果,例如细胞周期停滞、细胞凋亡和免疫系统的募集 (Decout 等人,2021 年)。最近的研究结果表明,染色体分离缺陷可激活系统性硬化症中的 cGAS-STING 通路,可能导致异常的自身免疫反应 (Paul 等人,2022 年)。研究人员正在努力寻找特定且有效的 cGAS-STING 抑制剂,以抑制自身免疫性疾病中的 cGAS-STING 通路。最近的一项研究表明,黄酮类化合物对 cGAS-STING 通路有效(Li 等人,2023 年),此外,黄酮类化合物还具有很强的抗炎活性(Gonfa 等人,2023 年)。本研究课题还强调了甘草提取物和甘草多糖对 cGAS-STING 通路的功效。相反,cGAS-STING 激动剂可能具有治疗益处;最近的一项研究表明,激活该通路会诱导 IFN-β 并启动 CD8 + T 细胞
摘要 针对癌症的单一疗法常常由于固有或获得性耐药性而失败。通过同时瞄准多个靶点,药物组合可以产生协同作用,从而提高药物有效性并降低耐药性。基于组学数据整合的计算模型已用于识别协同组合,但预测药物协同作用仍然是一个挑战。在这里,我们介绍了 DIPx,这是一种基于生物驱动的肿瘤和药物特异性通路激活评分 (PAS) 个性化预测药物协同作用的算法。我们使用两个独立的测试集在 AstraZeneca-Sanger (AZS) DREAM 挑战数据集中训练和验证了 DIPx:测试集 1 包含训练集中已经存在的组合,而测试集 2 包含训练集中不存在的组合,从而表明该模型能够处理新组合。预测的和观察到的药物协同作用之间的 Spearman 相关系数在测试集 1 中为 0.50(95% CI:0.47–0.53),在测试集 2 中为 0.26(95% CI:0.22–0.30),而挑战赛中表现最佳方法的 Spearman 相关系数分别为 0.38(95% CI:0.34–0.42)和 0.18(95% CI:0.16–0.20)。我们有证据表明,更高的协同作用与药物靶标之间的更高功能相互作用相关,并且这种功能相互作用信息可被 PAS 捕获。我们说明了如何使用 PAS 提供潜在的生物学解释,即激活介导联合药物协同作用的途径。总之,DIPx 可以成为个性化预测药物协同作用和 34 探索与联合药物作用相关的激活途径的有用工具。35
RNA 干扰 (RNAi) 是一种基本调控途径,具有广泛的功能,包括调节基因表达和维持基因组稳定性。尽管 RNAi 在真菌界广泛存在,但众所周知的物种,如模型酵母酿酒酵母,已经失去了 RNAi 途径。到目前为止,还没有证据表明白色念珠菌中存在完全功能的 RNAi 途径,白色念珠菌是一种被世界卫生组织认为至关重要的人类真菌病原体。在这里,我们证明了广泛使用的白色念珠菌参考菌株 (SC5314) 在编码中心 RNAi 成分 Argonaute 的基因中含有失活错义突变。相比之下,大多数其他白色念珠菌分离株含有典型的 Argonaute 蛋白,预计该蛋白具有功能性和 RNAi 活性。事实上,使用高通量小RNA和长RNA测序结合无缝CRISPR/Cas9基因编辑,我们证明了活性白色念珠菌RNAi机制抑制了亚端粒基因家族的表达。因此,白色念珠菌中存在完整且功能性的RNAi通路,这凸显了在研究这种危险病原体时使用多种参考菌株的重要性。
$ 共同第一作者 *共同最后作者 连载标题:靶向疗法机械地重新编程黑色素瘤细胞 关键词:黑色素瘤、细胞外基质、YAP、MRTF、靶向疗法、耐药性 利益冲突。作者声明不存在潜在利益冲突。财政支持:这项工作得到了癌症计划框架内的国家健康与医学研究所 (Inserm)、Ligue Contre le Cancer、国家癌症研究所 (INCA_12673)、ARC 基金会、ITMO Cancer Aviesan(国家生命科学与健康联盟、国家生命科学与健康联盟)和法国政府的资金支持(国家研究机构,ANR)通过“未来投资”LABEX SIGNALIFE:计划编号# ANR-11-LABX-0028-01。我们还感谢 Conseil général 06 和 Canceropôle PACA 的财政支持。 RBJ 获得了 ARC 基金会的博士奖学金。 IB 获得了抗癌联盟的博士奖学金。通讯作者:Sophie Tartare-Deckert tartare@unice.fr 和 Marcel Deckert deckert@unice.fr,Inserm UMR1065/C3M,151 Route de Ginestière BP2 3194,F-06204 Nice cedex 3。
摘要:多种睡眠呼吸障碍会引发反复的缺氧应激,从而可能导致认知障碍等神经系统疾病。然而,反复间歇性缺氧对血脑屏障 (BBB) 的影响尚不明确。本研究比较了两种间歇性缺氧诱导方法对 BBB 脑内皮的影响:一种是使用肼屈嗪,另一种是使用缺氧室。这些循环是在内皮细胞和星形胶质细胞共培养模型上进行的。在使用或不使用 HIF-1 抑制剂 YC-1 的情况下评估了 Na-Fl 通透性、紧密连接蛋白和 ABC 转运蛋白 (P-gp 和 MRP-1) 含量。我们的结果表明,肼屈嗪和间歇性物理缺氧逐渐改变 BBB 完整性,表现为 Na-Fl 通透性增加。这种改变伴随着紧密连接蛋白 ZO-1 和 claudin-5 浓度的降低。反过来,微血管内皮细胞上调 P-gp 和 MRP-1 的表达。在第三个周期的肼屈嗪治疗后也发现了这种改变。另一方面,第三次间歇性缺氧暴露显示 BBB 特征得以保留。此外,用 YC-1 抑制 HIF-1 α 可防止肼屈嗪治疗后出现 BBB 功能障碍。在物理间歇性缺氧的情况下,我们观察到不完全的逆转,这表明 BBB 功能障碍可能涉及其他生物学机制。总之,间歇性缺氧导致 BBB 模型发生改变,并在第三个周期后观察到适应性。
职位持有人负责通过乳腺癌治疗途径为患者及其家人提供支持,包括二级、社区和初级护理。职位持有人将在助理服务经理的直接或间接监督下工作。他们将负责协调对有复杂护理需求的人的护理、教育和支持,并为患者和护理人员提供联系点。 该职位提供专门的行政支持,以审查违反快速诊断标准 (FDS) 和 62 天癌症治疗目标的患者。该职位将促进信托基金实现和维持 FDS 和 62 天国家癌症目标。 该职位专门为支持现有途径而设计,需要职位持有人不断发展以支持这些途径,因为这些途径会随着时间的推移不断改进。职位持有人必须具有适应能力,并愿意随着服务的发展而灵活工作,包括质量保证、服务开发和改善患者结果和体验。 职位持有人将直接和间接地与患者及其护理人员合作,协助协调从转诊到治疗乳腺癌的加速途径护理。该职位的发展将以患者的需求为主导。该职位还将包括向患者提供相关信息,并协调加快患者治疗过程所需的任何检查和预约。 该职位将涉及协调适当的服务,以最大限度地提高治疗过程的效率,从而提高患者及其护理人员的质量和体验,并旨在尽早诊断癌症。 与团队密切合作,创建和建立有关该服务的信息传单和视频内容,以及患者在接受该服务时应了解的内容。
摘要:复发性或高级别脑膜瘤是一种尚未得到满足的医疗需求。最近,我们证明依维莫司靶向 mTOR 在体外和人体中都是相关的。然而,依维莫司诱导 AKT 活化,这可能会影响该药物的抗增殖作用。此外,MAP 激酶通路已被证明与脑膜瘤肿瘤发生有关。因此,我们通过结合使用 Pi3k 抑制剂 alpelisib 和 MEK 抑制剂 trametinib 来靶向 Pi3k‐AKT‐mTOR 和 MAP 激酶通路。我们的研究是在人脑膜瘤细胞系和大量原代培养物上进行的,这些原代培养物来自 63 个新手术的脑膜瘤,包括 35 个 WHO 1 级、23 个 2 级和 5 个 3 级,其中一半表现出 NF2 基因组改变。在所有细胞系和 32 个随机选择的肿瘤中,无论基因组状态、组织学亚型或等级如何,Alpelisib 对细胞活力和增殖的抑制作用均高于依维莫司。曲美替尼还强烈抑制细胞增殖并诱导 AKT 活化。Alpelisib 和曲美替尼联合治疗可逆转曲美替尼诱导的 AKT 活化,并诱导附加抑制作用,无论细胞系或肿瘤特征如何。共同靶向途径似乎很有前景,可能特别适用于侵袭性脑膜瘤。
