摘要目的确定在单次注射对比剂期间使用动态自旋和梯度回波平面成像 (动态 SAGE-EPI) 在胶质瘤中同时获得的动态磁化率对比 (DSC)、动态对比增强 (DCE) 和对比剂漏泄效应得出的定量图的可行性和生物学相关性。材料和方法 使用动态 SAGE- EPI 对 38 例增强脑胶质瘤患者进行前瞻性成像,并计算传统 DSC 指标(归一化相对脑血流量 [nrCBV]、信号恢复百分比 [PSR])、DCE 指标(体积转移常数 [ K trans ]、血管外隔室 [ ve ])和泄漏效应指标:Δ R 2,ss *(反映 T 2 *-泄漏效应)、Δ R 1,ss(反映 T 1 泄漏效应)和示踪剂平衡时的横向弛豫率(TRATE,反映 Δ R 2,ss * 和 Δ R 1,ss 之间的平衡)。在患者亚组(初治 [TN] vs 复发 [R])和生物学特征(IDH 状态、Ki67 表达)之间比较了这些指标。结果 在 IDH 野生型神经胶质瘤(IDH wt - 即胶质母细胞瘤)中,先前接受治疗导致 TRATE 较低(p = 0.002),以及 PSR 较高(p = 0.006)、K trans 较高(p = 0.17)、Δ R 1,ss 较高(p = 0.035)、ve 较高(p = 0.006)和 ADC 较高(p = 0.016)。在 IDH 突变型神经胶质瘤(IDH m)中,先前接受治疗导致 K trans 和 Δ R 1,ss 较高(p = 0.026)。在 TN 神经胶质瘤中,动态 SAGE-EPI 指标往往受 IDH 状态的影响(p 范围为 0.09–0.14)。高于 142 mM −1 s −1 的 TRATE 值仅见于 TN-IDH wt ,而在 TN-胶质瘤中,该截止值作为 Ki67 > 10% 的预测因子具有 89% 的敏感性和 80% 的特异性。结论动态 SAGE-EPI 能够同时量化脑肿瘤灌注和通透性,以及通过单次注射造影剂绘制与细胞结构 (TRATE) 和血脑屏障破坏 (Δ R 1,ss) 相关的新指标。临床相关性声明使用动态 SAGE-EPI 同时进行 DSC 和 DCE 分析可减少扫描时间和造影剂剂量,分别减轻对成像方案长度和钆不良反应和积累的担忧,同时提供反映血脑屏障破坏和肿瘤组织细胞结构的新型泄漏效应指标。要点•传统上,脑肿瘤的灌注和通透性成像需要两次单独的造影剂注射和采集。 • 动态自旋和梯度回波平面成像可同时进行灌注和通透性成像。 • 动态自旋和梯度回波平面成像可提供新的图像对比度,反映血脑屏障破坏和细胞结构特征。
审查的摘要目的是回顾什么肠道通透性以及如何测量,并总结当前的证据将改变的肠道渗透性与高血压的发展联系起来。最近的发现增加了直接在体内测量的胃肠道通透性,在高血压的实验和遗传动物模型中已证明。这与微生物物质到全身循环和炎症途径的激活一致。人类高血压中肠道渗透性增加的证据依赖于少数血液生物标志物,没有直接测量高血压队列中肠道渗透性的研究。有新兴的文献认为,其中一些推定的生物标志物可能无法准确反映胃肠道的渗透性。来自动物高血压支持的动物模型的摘要数据增加了肠道渗透性;但是,人类缺乏确定的证据。需要直接测量高血压患者的肠道通透性的未来研究。
炎症性肠病炎症性肠病(IBD)是一种慢性胃肠道疾病。IBD包括克罗恩病(CD)和溃疡性结肠炎(UC)。 值得注意的是,与没有IBD的无活性CD或健康个体的患者相比,活性CD患者的肠道菌群稳定[Sepehri等,2007]。 肠道菌群破坏的长期作用,以及肠道中的病原体的丰富度增加,即使在没有炎症的疾病稳定时期,也可能会影响肠道通透性[Vivinus-Nébot等人,2014年]。 CD的发展已显示与肠道通透性的增加有关。 这证实了改变的肠道屏障功能有助于发病机理,任何异常都可以作为发生CD的风险的生物标志物[Turpin等,2020]。IBD包括克罗恩病(CD)和溃疡性结肠炎(UC)。值得注意的是,与没有IBD的无活性CD或健康个体的患者相比,活性CD患者的肠道菌群稳定[Sepehri等,2007]。肠道菌群破坏的长期作用,以及肠道中的病原体的丰富度增加,即使在没有炎症的疾病稳定时期,也可能会影响肠道通透性[Vivinus-Nébot等人,2014年]。CD的发展已显示与肠道通透性的增加有关。这证实了改变的肠道屏障功能有助于发病机理,任何异常都可以作为发生CD的风险的生物标志物[Turpin等,2020]。
在pH极端繁殖的生物被分类为嗜酸剂,它们在pH 3以下表现出最佳生长,或碱性含量,或碱性含量在pH值大于9的最佳生长(Rothschild and Mancinelli 2001; Wiegel 2011)。嗜酸剂和碱性。嗜酸剂在酸性矿山排水,溶液场,酸热温泉和富马尔,煤变质和生物反应器的位置繁盛。这些环境具有较低的pH值,温度从25°C到90°C以上,压力最大为5 MPa,低盐度,一些重金属,以及厌氧或有氧条件(Seckbach和Libby 1970; Hallberg andLindstrortstrortströM9994; Golyshina et al。2000;他等人。2004; Ferris等。2005;吉田等。 2006; Hallberg等。 2010; Reeb和Bhattacharya 2010)。 嗜酸剂使用多种pH稳态机制,涉及限制细胞质膜的质子进入和质子清除质子及其对细胞质的作用。 为了帮助维持δpH,嗜酸剂具有高度不可渗透的细胞膜,可将质子插入胞质中(Konings等人。 2002)。 因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。 一个高度不可渗透的细胞膜的一个例子是古细菌特异性2005;吉田等。2006; Hallberg等。 2010; Reeb和Bhattacharya 2010)。 嗜酸剂使用多种pH稳态机制,涉及限制细胞质膜的质子进入和质子清除质子及其对细胞质的作用。 为了帮助维持δpH,嗜酸剂具有高度不可渗透的细胞膜,可将质子插入胞质中(Konings等人。 2002)。 因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。 一个高度不可渗透的细胞膜的一个例子是古细菌特异性2006; Hallberg等。2010; Reeb和Bhattacharya 2010)。嗜酸剂使用多种pH稳态机制,涉及限制细胞质膜的质子进入和质子清除质子及其对细胞质的作用。为了帮助维持δpH,嗜酸剂具有高度不可渗透的细胞膜,可将质子插入胞质中(Konings等人。2002)。 因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。 一个高度不可渗透的细胞膜的一个例子是古细菌特异性2002)。因为膜质子的通透性决定了质子向内泄漏的速率,质子通透性之间的平衡,质子通过高能和运输系统的旋转以及向外质子泵的速率决定了细胞是否可以维持适当的质子运动力(PMF)。一个高度不可渗透的细胞膜的一个例子是古细菌特异性
血脑屏障 (BBB) 是一种高度选择性的半透性膜,可防止有害物质从血液进入,从而保护中枢神经系统 (CNS)。血脑屏障对于维持神经稳态至关重要,但它对神经肿瘤治疗药物的输送造成了重大障碍,尤其是脑肿瘤,如胶质母细胞瘤。传统疗法通常无法在脑中达到足够的浓度,导致治疗效果不佳。为了应对这一挑战,研究人员已经开发出创新策略来调节血脑屏障的通透性并促进靶向药物输送。血脑屏障由紧密堆积的内皮细胞、星形胶质细胞终足和基底膜组成,形成强大的防御机制。它限制大分子、蛋白质和超过 98% 的小分子药物的通过。这种保护虽然有利于抵御毒素和病原体,但却成为有效治疗脑癌的障碍。此外,脑肿瘤本身可以改变血脑屏障的完整性,产生异质通透性,使治疗输送变得复杂。聚焦超声与微泡相结合已成为一种有前途的技术,可以暂时且可逆地破坏血脑屏障。超声波使微泡在脑血管内振荡,暂时松弛内皮细胞之间的紧密连接。这使得药物能够更有效地渗透到中枢神经系统。
作用机制概述:法利昔单抗通过抑制血管紧张素转换酶-2 (Ang-2) 和血管内皮生长因子-A (VEGF-A) 的两种不同途径发挥作用。Ang-2 通过促进内皮细胞不稳定、周细胞丢失和病理性血管生成,导致血管不稳定,从而加剧血管渗漏和炎症。它还能使血管对 VEGF-A 的活性敏感,导致进一步的血管不稳定。Ang-2 和 VEGF-A 协同增加血管通透性并刺激新血管形成。通过同时抑制 Ang-2 和 VEGF-A,法利昔单抗可降低血管通透性和炎症,抑制病理性血管生成并恢复血管稳定性。
结果:两组之间没有观察到食物摄入和体重的显着变化。然而,与货车组相比,VAD和VAS组在不同时间点显示出食物摄入量的降低。在认知功能方面,货车组在莫里斯水迷宫测试中表现更好,表明了出色的学习能力和记忆能力。VAD和VAS组表现出受损的性能,而VAS组的表现要比VAD组好。血清维生素A浓度之间的浓度显着不同,而VAS组的浓度最高。与van和VAS组相比,VAD组的Aβ水平显着更高。 微生物分析表明,VAS和VAS组的微生物多样性比VAD组高,而特定的分类单元表征了每个组。 货车组的特征是分类群,例如Actinohacteriota和Desulfovibrionaceae,而VAD组的特征是副翅目和Tannerellaceae。 VAS组显示Aβ水平显着更高。微生物分析表明,VAS和VAS组的微生物多样性比VAD组高,而特定的分类单元表征了每个组。货车组的特征是分类群,例如Actinohacteriota和Desulfovibrionaceae,而VAD组的特征是副翅目和Tannerellaceae。VAS组显示
蛋白质-蛋白质相互作用 (PPI) 在许多生物过程中发挥着重要作用,是许多人类疾病的潜在治疗靶点。钉合肽作为干扰 PPI 的最有希望的治疗候选物,具有更高的 α-螺旋度、更好的结合亲和力、更耐蛋白酶消化、更长的血清半衰期和增强的细胞通透性,与小分子药物和生物制剂相比表现出更高的药理活性。本文概述了钉合肽的持续进展,主要涉及设计原理、结构稳定性、生物活性、细胞通透性和在治疗中的潜在应用,旨在为设计和探索具有增强的生物学和药代动力学特性的钉合肽作为针对各种疾病的下一代治疗性肽药物提供广泛的参考。
有效绕过血脑屏障 (BBB) 是开发针对中枢神经系统的药物的主要障碍。虽然有几种方法可以确定小分子的 BBB 通透性,但平行人工膜通透性测定 (PAMPA) 是药物发现中最常见的测定方法之一,因为它具有稳健和高通量的特性。药物发现是一项长期且昂贵的事业,因此,任何简化此过程的进展都是有益的。在这项研究中,在 PAMPA-BBB 测定中筛选了来自 60 多个 NCATS 项目的约 2,000 种化合物,以开发定量结构-活性关系模型来预测小分子的 BBB 通透性。在分析了最先进和最新的机器学习方法之后,我们发现基于 RDKit 描述符作为附加特征的随机森林提供了最佳的训练平衡准确度 (0.70 ± 0.015),而使用 RDKit 描述符的图卷积神经网络的消息传递变体在前瞻性验证集上提供了最高的平衡准确度 (0.72)。最后,我们将体外 PAMPA-BBB 数据与啮齿动物体内脑渗透数据相关联,观察到 77% 的分类相关性,这表明使用 PAMPA-BBB 数据开发的模型可以预测体内脑渗透性。鉴于大多数先前研究依赖体外或体内数据来评估 BBB 渗透性,我们使用迄今为止最大的 PAMPA-BBB 数据集开发的模型提供了一种正交方法来估计小分子的 BBB 渗透性。我们将部分数据存入 PubChem 生物测定数据库 (AID: 1845228),并在 NCATS 开放数据 ADME 门户 (https://opendata.ncats.nih.gov/adme/) 上部署了性能最佳的模型。这些举措旨在为药物研发界提供宝贵的资源。