自发参量下转换 (SPDC) 几十年来一直是探索量子现象及其应用的关键技术。例如,传统的 SPDC 将高能泵浦光子分裂成两个低能光子,是产生纠缠光子对的常用方法。自 SPDC 早期实现以来,研究人员一直想将其推广到更高阶,例如产生纠缠光子三重态。然而,通过单个 SPDC 过程直接生成光子三重态仍然难以实现。在这里,我们使用通量泵浦超导参量腔展示了直接三光子 SPDC,光子三重态在单腔模式下生成或在多个模式之间分裂。在强泵浦下,状态可以非常明亮,通量密度超过每秒每赫兹 60 个光子。观察到的状态是强非高斯的,这对潜在应用具有重要意义。在单模情况下,我们观察到正交电压的三角星形分布,这表明了长期预测的“星态”。观测到的状态表现出强的三阶关联,这与立方哈密顿量产生的状态预期一致。通过以多种模式的和频进行泵浦,我们观察到多种模式之间存在强的三体关联,令人惊讶的是,在没有二阶关联的情况下也是如此。我们进一步分析了辛对称群模式变换下的三阶关联,表明观察到的变换性质可以“指纹化”产生它们的特定立方哈密顿量。观测到的非高斯三阶关联代表了量子光学领域向前迈出的重要一步,可能对微波场的量子通信以及连续变量量子计算产生重大影响。
摘要。这篇科学文章深入回顾了可再生能源的最新进展,探讨了它们在应对全球能源挑战方面的重要性。本文涵盖了各种类型的可再生能源,包括太阳能、风能、水电、地热能和生物质能,强调技术发展、效率改进和环境考虑。此外,本文还讨论了全球可再生能源采用的现状及其对减少碳排放的潜在影响。该分析整合了最近的研究和研究论文的结果,全面概述了可再生能源技术的当前格局。1. 简介 21 世纪人们越来越认识到传统能源的局限性和环境影响。化石燃料的开采、燃烧和利用不仅对全球变暖产生了重大影响,而且还导致了地缘政治紧张和资源枯竭 [1, 2]。在这种背景下,可再生能源已成为一种有前途的替代品,利用自然元素取之不尽的力量来满足世界日益增长的能源需求。受环保要求和能源安全需求的推动,全球各国政府、行业和研究机构加大了探索和提升可再生能源技术潜力的力度。对可持续能源解决方案的追求推动了太阳能 [3, 4]、风能 [5]、水电 [6-10]、地热 [11-13] 和生物质能 [14-20] 技术的发展。这些进步不仅有望带来更清洁的能源,还为各国带来了经济机会和能源独立性。可再生能源在全球和单个国家范围内的能源潜力是当前能源消耗水平的许多倍,因此可以将其视为一种可能的能源生产来源。众所周知,人类发展的先决条件表明,需要对已在管理的可再生能源进行广泛研究,这既是因为石油、天然气和煤炭产量不可避免地增加,成本也随之增加,也因为环境原因(二氧化碳排放和经济政策对环境的其他有害影响)。通常来说,可再生能源的使用不会对环境产生严重的负面影响;在大多数情况下,它们都是环保且广泛可用的能源。可再生能源的严重缺点限制了其广泛使用,包括能量流密度低、随时间变化大,因此需要大量成本来购买用于收集、积累和转换能源的设备 [21]。例如,晴天中午太阳辐射在地球表面的通量密度仅为 1 kW/m 2 左右,其年平均值为考虑到季节和天气波动,对于地球上阳光最充足的地区,热流密度不超过 250 W/m 2 [22]。风流的平均比能量密度通常也不超过几百 W/m 2 ,风速为 10 m/s 时,比能量密度约为 500 W/m 2 。速度为 1 m/s 的水流的能量密度也只有 500 W/m 2 左右。为了进行比较,我们指出,现代蒸汽锅炉炉壁上的热流密度达到几百 kW/m 2 。
Glasgow, G1 1XL, UK Corresponding authors, e-mail: * arnaoutakis@hmu.gr , # bryce.richards@kit.edu Abstract Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics.但是,所需的超高光强度和灯笼离子的狭窄吸收带限制了有效的太阳能利用率。在本文中,我们报告了令人兴奋的上转换器,其浓度的阳光在通量密度高达2300个太阳下,辐射仅限于硅带隙以下的光子能量(对应于波长= 1200 nm)。上转换到= 980 nm是通过在荧光聚合物基质中使用六角形的Erbium掺杂钠yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium。上转换具有与辐照度的非线性关系,因此在高辐照度下,在过程变为线性的情况下发生阈值。对于β -Nayf 4:25%ER 3+,我们在320个太阳下浓缩的阳光下发现了两个光子阈值。值得注意的是,该阈值低于相应的激光激发,并且可能与所有共同激发的ER 3+离子水平和激发的吸收有关。这些结果突出了一条利用光伏的太阳光谱的途径。简介上转换(UC)是一个非线性光子过程,可以添加来自两个或多个较低能量光子的能量,从而导致单个较高能量光子的发射[1]。第一个激发态通过基态吸收(GSA)填充。uc已在激光器[2],生物医学成像[3],[4],抗爆炸[5],[6],塑料回收[7]和太阳能收获[8],[9],[9],[10]中进行了研究。对于光伏,这可能是绕过太阳能光谱中与子频带光子相关的太阳能电池传输损失的一种有前途的方法[11]。计算表明,在理想情况下,UC可以提高单连接太阳能电池的理论上效率(Shockley-Queisser)极限从33%到48%[11]。有效的稀有地球[12],[13],[14]上转换器的外部转换器高达9.5%,外部UC量子产量(EUCQY),这是外部发射与入射光子的比率。稀有的稀土上转换器具有较高的近红外(NIR)Eucqy的表现最高的硅[14],[15]和钙钛矿太阳能电池[16]。在三价灯笼离子中,UC通过部分填充的4F壳中的辐射过渡发生。额外光子的激发态吸收(ESA)可以产生更高的激发态。然而,可以通过第一个激发态以第一个激发态的能量传递向上转换(ETU)来进行更有效的过程,尤其是在较低的激发能力密度下,如图1(a)。一个离子的能量被捐赠给附近的离子,将其推广到更高的亚稳态状态,而敏化剂的能量又回到基态。