5。对所选尺寸的解释10 5.1可密封或密封的房间10 5.2通风系统与整个建筑物的通风分开13 5.3 HEPA过滤的排气空气,通过HEPA过滤器14 5.4在实验室和空气锁中的工作区域的hepa滤波器14 5.4持久负压,与环境的大气负压相比,与环境的大气负压17 5.5自动17 5.5自动驾驶员;在被污染的材料,废物和受污染的设备中灭活微生物。21 5.6选定单元的不间断紧急电源和控制仪24 5.7设备故障的警报系统26 5.8地板设计作为捕获水的捕获盆地,用于扑灭水(或替代措施)29 5.9放弃排放废水进入污水处理系统或完全失活的所有废水;在水槽,管道和淋浴的流出中灭活微生物。31 5.10符合地震安全标准34 5.11房间,易于清洗地板,墙壁和表面以及对水,酸,碱,溶剂,溶剂,消毒剂和去污剂的抗性34
ABST辅助建筑集水池; ABSVS 辅助建筑特殊通风系统 ABT 自动总线转换 ABV - 辅助建筑通风 ABWR 先进沸水反应堆 ABWRP 美国沸水反应堆计划 AC 酸浓缩器,A&C 充分性和兼容性 AC ‘ 行政控制咨询委员会 空调指控协调员 ac 交流电,A/C 空调 A-C 阿利斯-查尔默斯公司或阿利斯-查尔默斯制造公司 ACA 军备控制协会 ACAD 空气遏制大气稀释 ACB 气动断路器 布列塔尼工厂 (法国) ACC 蓄能器风冷式冷凝器 ACCWS 辅助部件冷却水系统 ACDA 军备控制与裁军机构,ACEC 沙勒罗瓦电气建筑工厂,S.A. (比利时) ACF 酸浓缩器进料载流量校正因子 自动控制特征 acfm,实际立方英尺/英尺每分钟 ACHP 历史保护咨询委员会 ACI 美国混凝土研究所自动关闭和联锁ACIWA ac-独立加水,;ACL访问控制列表I)-S交替浓度限制ACLP核心以上负载垫'核心以上负载'平面
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护室 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 病房内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒内沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以被视为概念验证,并适用于任何房间配置。
1. 规则制定、修改、废止概况....................................... ................................................. ...... 1 2. 钢质船舶法规等修订概况 2.1 发动机和电气设备相关 2.1.1 螺旋桨轴和艉轴管轴的开检 ............ ...................................................... 13 2.1.2 柴油机更换过程中氮氧化物排放法规的应用................................................................. ...... 17 2.1.3 液货泵舱通风系统 .................................................. ........ 21 2.1.4 油轮货油管路系统的接地...................................................... 25 2.1.5 防火电缆的适用范围 ................................. .................................................. 28 2.1.6 环光灯的遮光角度...................................................... ...................................................... . 34 2.1.7 未来规则修订时间表(发动机和电气设备相关)................................................ ...... 38 2.2 舾装相关 2.2.1 船上噪声规范...................................................... ................................................. .. 47 2.2.2 滚装/滚落区域和车辆装载区域的热防护.................. 57 2.2.3 消防设备呼吸器报警装置.......... . ...................................................... ...... 60 2.2.4 消防员呼吸器充装设备和备用气瓶 .................................. ...... 63 2.2.5 消防员通讯方法 .................................................. ...................................................... 66 2.2.6自动下降弹射式救生艇释放装置操作试验...................................... ................................. 69 2.2.7 自闭式气动管头使用批准................................. ................................................... 73 2.2 .8 未来规则修订时间表(设备相关)....................................................... .................................... 77 2.3 船体和材料 2.3.1 2011 ESP 规则.........................
• 所有实验室工作都必须在尽量减少化学品暴露的条件下进行。 • 仅使用您所在实验室有足够设备来处理的化学品,即有足够的通风罩通风系统。 • 切勿用明火或加热板直接加热易燃化学品。相反,应使用加热罩、蒸汽或热水浴。 • 切勿将易燃物存放在点火源附近。 • 所有易燃溶剂都应在化学通风橱或通风良好的区域使用。 • 将易燃物从一个容器转移到另一个容器时,如果存在火花的可能性,请将两个容器接地。 • 所有易燃液体都应存放在设计合理的安全柜或安全罐中。 • 避免分散或惊吓其他实验室工作人员。切勿在实验室内奔跑或打闹。 • 未经主管明确许可,实验室工作人员不得独自在实验室工作。主管和学生之间应做出安排,以确保学生在没有直接监督的情况下在实验室内的安全。其他教职员工或学生应了解学生在实验室的到达和离开情况。 • 始终警惕实验室中的不安全状况。 如果可能,立即纠正此类情况,或向实验室主管报告。 • 熟悉 MSDS 和其他安全资源的位置和内容,并使用它们。 个人卫生、家务管理和个人防护设备 (PPE)
热泵在萨图马雷部分地区很常见,但其效率、尺寸和热量输送与接收介质(空气、水、地面)组合各不相同。热泵的推广是 REPowerEU 计划中一项重要的节能措施。该技术成熟,可以快速实施。Casa Eficienta Energetic 计划包括对热泵的支持。良好的隔热是第二种方法,例如针对窗户。即使窗户可能只占建筑物外表面的 5-10%,但在寒冷天气下,它们也会造成建筑物约 40% 的热量损失。太阳能加热,即将空气或液体暴露在阳光下,经常被提及与能源效率有关,因为它可以减少电力和天然气需求。热空气或液体可用于直接加热建筑物内部,也可以将其连接到热交换器和水箱进行储存。被动式太阳能是指利用阳光和自然温暖的巧妙建筑设计。精心规划是被动式太阳能的关键,例如朝南的大窗户,但要有延伸的屋顶以在夏季提供遮阳,并选择具有高热质量的建筑材料。为了提高能源效率,安装监控和管理系统很有用,从简单的温度计到热像仪以及通过应用程序进行持续监控。在现代住宅和商业建筑中,通风系统也非常重要。
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护病房 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 室内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以看作是一个概念证明,并适用于任何房间配置。
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护室 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 房间内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒内沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以被视为概念证明,并适用于任何房间配置。
实验研究可以提供有关建筑通风和环境因素对医院空气传播影响的理解、知识和真实案例经验证据。从现有研究中获得的信息有助于制定工程解决方案和管理实践,以对抗医院空气传播感染。进行了系统回顾,总结了实验方法、研究兴趣、有用结果和局限性。实验研究的兴趣呈稳步但缓慢增长的趋势,主要集中在通风系统、策略和配置对空气传播的影响上。研究了在环境因素、排放情景和人类运动的综合影响下生物气溶胶的扩散。还研究了局部通风、空气净化器和消毒技术。总结并强调了实验技术和一些关于最佳通风策略和管理实践的有用见解。实证研究的局限性包括采样困难、规模有限和测试场景数量、不受控制/未考虑的影响因素以及实验媒介。利用基于物联网的采样设备进行实验,实时监测生物气溶胶或其替代品,在医院进行逐案现场调查,开展跨学科研究与合作,可以帮助克服研究挑战,并提供切实有效的解决方案,以最大限度地减少医院内的空气传播。
3.4 燃油量测量 94 3.4.1 液位传感器 94 3.4.2 燃油计量探头 96 3.4.3 燃油量测量基础知识 96 3.4.4 油箱形状 97 3.4.5 燃油特性 98 3.4.6 燃油量测量系统 101 3.4.7 福克 F50/F100 系统 101 3.4.8 空客 A320 系统 103 3.4.9 “智能”探头 104 3.4.10 超声波探头 105 3.5 燃油系统工作模式 105 3.5.1 增压 106 3.5.2 发动机供油 106 3.5.3 燃油输送 108 3.5.4 加油/放油 109 3.5.5 通风系统 111 3.5.6 使用燃油作为散热器 112 3.5.7 外部油箱 112 3.5.8 抛弃燃油 113 3.5.9 空中加油 114 3.6 综合民用飞机系统 116 3.6.1 庞巴迪环球快车 117 3.6.2 波音 777 119 3.6.3 A340-500/600 燃油系统 120 3.7 油箱安全 128 3.7.1 燃油惰化原理 129 3.7.2 空气分离技术 130 3.7.3 典型的燃油惰化系统 131 3.8 极地运行 – 冷燃油管理 133 3.8.1 最低设备清单 (MEL) 133 3.8.2 冷燃油特性 134 3.8.3 燃油温度指示135