量化疲劳裂纹扩展对于断裂关键工程部件和结构的损伤容限评估非常重要。疲劳裂纹扩展表征历史上的第一个重大事件是使用应力强度因子范围 D K 来关联疲劳裂纹扩展速率,由 Paris 等人 1 基于三项独立研究得出。Rice 2 在连续力学框架内进一步合理化了这种方法,认为疲劳裂纹扩展速率数据可能与应力强度因子范围相关。此后,人们普遍认为,在小规模屈服 (SSY) 条件下的大多数工程应用中,使用弹性应力强度因子范围 D K 就足够了,尽管大约在同一时间人们也认识到了载荷比 R 的作用, 3
量化疲劳裂纹扩展对于断裂关键工程部件和结构的损伤容限评估至关重要。疲劳裂纹扩展表征历史上的第一个重大事件是使用应力强度因子范围 D K 来关联疲劳裂纹扩展速率,由 Paris 等人 1 基于三项独立研究得出。Rice 2 在连续力学框架内进一步合理化了这种方法,认为疲劳裂纹扩展速率数据可能与应力强度因子范围相关。此后,人们普遍认为,在小规模屈服 (SSY) 条件下的大多数工程应用中,使用弹性应力强度因子范围 D K 就足够了,尽管大约在同一时间人们也认识到了载荷比 R 的作用,3
摘要 - 传统数据驱动的质量预测方法主要是由静态模型构建的,使用慢速采样率的清洁数据,使得dynamics未使用。为了充分利用以快速采样率收集的动态过程数据,本文提出了一种新型的基于深度学习的鲁棒双率动态数据建模方法,以质量预测动态非线性过程。首先提出了一种新的动态数据降级性对抗归因网络,以解决动态过程数据之间缺少的价值插补。然后,建立了一个新的提示卷积神经网络(HCNN),用于基于双速率数据的质量预测。提出的HCNN将通道扩展的信息提示机理纳入卷积神经网络中,以使用明确的时间和可变信息提取动态特征。最后,使用DOW蒸馏过程数据集和北京多站点空气质量数据集对所提出的方法进行了验证。
腐蚀是由于与环境的电化学反应引起的金属质量的降低。许多因素会导致材料的腐蚀。其中之一是由于溶解在水培养基中的氯化物浓度的影响,因此环境具有腐蚀性(酸)。腐蚀可以以各种形式发生,范围从整个金属表面均匀腐蚀到集中在某些部位的腐蚀。有许多抑制腐蚀过程的方法。众多方法之一是使用抑制剂。有机抑制剂一种无毒,便宜的一种抑制剂,在自然界中可用,易于更新,不会损害环境。有机抑制剂是通过在自然界中提取某些材料而获得的。在这项研究中,使用的抑制剂是Dayak洋葱提取物。抑制剂用于0.5m HCl培养基中的5L钢材料。使用减肥方法用于检索钢腐蚀速率数据的方法。抑制效率达到99.02%,添加浓度为5%的抑制剂,渗透率为10天,腐蚀速率为4.46 mph。关键字:腐蚀;抑制剂;腐蚀速率;火钢5L
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子类似物,该系数描述了经典混沌系统扰乱的时间尺度。OTOC 仅应用于非常有限数量的玩具模型,例如与黑洞信息扰乱相关的 Sachdev-Ye-Kitaev 模型,但它们可以发现在量子系统中的信息扰乱的更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的容易的能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和探索全态密度时 OTOC 的后期“饱和”之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,Maldacena 边界仍然由正则化的 OTOC 满足,但不由非正则化的 OTOC 满足,这强调了前者对于讨论这种中等尺寸量子系统中的信息扰乱更有用。
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子模拟,该系数描述了经典混沌系统被扰乱的时间尺度。OTOC 仅应用于非常有限的玩具模型,例如与黑洞信息扰乱相关的 SYK 模型,但它们在量子系统中的信息扰乱方面具有更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的轻松能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和晚期“饱和” OTOC(当探索到全状态密度时)之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,正则化的 OTOC 仍能满足 Maldacena 边界,但不正则化的 OTOC 则不能,这强调了前者更适合于讨论这种中等尺寸量子系统中的信息扰乱。
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子模拟,该系数描述了经典混沌系统被扰乱的时间尺度。OTOC 仅应用于非常有限的玩具模型,例如与黑洞信息扰乱相关的 SYK 模型,但它们在量子系统中的信息扰乱方面具有更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的轻松能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和晚期“饱和” OTOC(当探索到全状态密度时)之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,正则化的 OTOC 仍能满足 Maldacena 边界,但不正则化的 OTOC 则不能,这强调了前者更适合于讨论这种中等尺寸量子系统中的信息扰乱。
J � � 平面应变 J 积分断裂韧性,MPa m K 应力强度因子(模式 I),MPa m ��� K � 临界断裂韧性,MPa m ��� K � 弹性应力强度因子,MPa m ��� K � 弹性或弹性 — 塑性应力强度因子,MPa m ��� K � � 平面应变断裂韧性,MPa m ��� K � 基于 J 积分的等效 K,MPa m ��� K ��� 最大应力强度因子,MPa m ��� K ��� 最小应力强度因子,MPa m ��� K � 裂纹尖端张开应力强度因子,MPa m ��� K � 弹性 — 塑性应力强度因子,MPam ��� K � 弹性应力集中因子 K � 弹性 — 塑性应力集中因子 K � 弹性 — 塑性应变集中因子 N 载荷循环次数 N � 失效前的载荷循环次数 P �� 裂纹尖端张开载荷,N P ��� 最大施加载荷,N r 孔或缺口尖端半径,mm R 应力比 ( S ��� / S ��� ) S 施加应力,MPa S �� 裂纹尖端张开应力,MPa S ��� 最大施加应力,MPa S ��� 最小施加应力,MPa S �� TWIST 中的平均飞行应力,MPa S � � 一克飞行应力,MPa t � 沿 � 轮廓的牵引力,MPa ¹ � 裂纹扩展速率数据的转变 (i " 1 至 4) ¹ * 裂纹尖端周围的轮廓积分,MPa m u � 沿 � 轮廓的位移,mm » 裂纹尖端区域周围的材料体积,mm �
使用两种硅烷(((3-氨基丙基) - 三乙氧基菌)和(3-甲基丙基) - 三乙氧基硅烷)进行官能化,以分别获得生态友好型胺功能化的GO(GONH)和硫醇功能功能(GOSH)。两个硅烷也被一起使用,以获得胺 - 硫醇双官能化的GO(GOSN)。获得了各种物理化学特征,包括使用傅立叶转换红外(FTIR)光谱仪,热重分析仪和X射线衍射仪的光谱。吸附剂用于对水溶液中Cr吸附的比较研究。将所获得的数据拟合到伪优先(PFO)和伪秒阶(PSO)模型,均质分形伪秒(FPSO)以及Weber-Morris - 莫里斯 - 摩尔斯 - 摩尔斯 - 莫里斯(Weber-Morris)内膜内颗粒扩散(IPD)动力学模型。计算了Langmuir和Freundlich吸附等温模型以及热力学的模型参数。表征结果显示成功的功能化。GONH,GOSH和GOSN分别在水中表现出碱性,酸性和中性pH。胺和硫醇官能团,以及降低的顺序。吸附剂比原始GO具有更高的每单位重量密度,并且热稳定性更好。平衡Cr吸附。PSO和FPSO更好地描述了速率数据。随着溶液的pH含量,Cr吸附降低;最佳吸附在pH 2处记录。吸附过程是理论上的放热过程,即自发过程。平衡吸附数据拟合了GONH的Langmuir吸附等温线模型,而它为GOSH和GOSN拟合了Freundlich。这些吸附剂的Cr吸附能力分别为114、89.6和173 mg/g,分别为GONH,GOSH和GOSN,并且这些吸附能力比几种报道的基于石墨烯的吸附剂要好,并提出了这些吸附剂的潜力。©2020水环境联合会
化学与生物分子工程系提供的本科课程模块描述如下。为简洁起见,工作量以 ABCDE 格式显示,其中 A 代表每周的讲座小时数,B 代表每周的辅导小时数,C 代表每周的实验室小时数,D 代表每周的项目/作业小时数,E 代表每周的准备工作小时数。CN1101A 化学工程原理与实践模块学分:4 先决条件:无 排除:无 交叉列表:无 本模块通过一系列动手实验室提供对化学工程概念的体验式接触。简单而又视觉上引人入胜的演示将使这些概念栩栩如生,并作为本科课程核心模块的预览和桥梁,同时突出它们的实际相关性。学生将通过关于理论背景和实验室程序的必修实验前阅读为每节课做准备。在实验室中,他们将学习进行测量、数据收集、分析、建模、解释和演示。实验室课程将与新加坡工业和社会相关的实际工程应用相结合。 CN2102 化学工程原理与实践 II 模块化学分:4 先决条件:无 排除:无 交叉列表:无 该模块是两部分模块的第二部分,旨在通过一系列动手实验室为一年级化学和生物分子工程专业的学生提供生物分子/生物化学/生物过程工程基础概念的体验式接触,包括质量和能量平衡、生物安全和无菌处理、生物反应动力学、生物反应器设计、下游加工和净化等。在实验室中,他们将学习进行测量、数据收集、分析、解释和演示。实验室课程将与新加坡工业和社会相关的实际工程应用相结合。 CN2101 物质与能量平衡 模块 学分:3 工作量:2-0.5-0-0-5 先决条件:无 排除:无 交叉列出:无 本模块为学生提供化学工程过程中物质和能量平衡的基本概念。 它还全面介绍了不同的分析和解决问题的方法。 特别是,本模块涵盖了稳态物质和能量平衡,包括循环、相变和反应、同时物质和能量平衡以及非稳态平衡。 所有基本概念都通过使用相关的过程示例来说明。 本模块针对一级工程或科学学生。 CN2116 化学动力学和反应器设计 模块 学分:4 工作量:3-1-0-3-3 共同要求:CN2125 排除:无 交叉列出:无 该模块首先复习化学动力学和热力学,重点介绍反应速率、速率表达式以及简单和复杂反应的不同定义。然后介绍理想反应器的设计方程,接着介绍速率数据分析的一般方法。反应器排序、多反应中的产量与生产率考虑因素,以及非