激光这个词是受激辐射光放大的缩写。激光用于各种设备和应用,例如超市扫描仪、光盘存储驱动器、光盘播放器、眼科和血管成形术以及军事瞄准。激光还彻底改变了物理化学研究。它们对光谱学和光引发反应或光化学领域的影响是巨大的。利用激光,化学家可以以高光谱或时间分辨率测量分子的光谱和光化学动力学。此外,这些技术非常灵敏,可以研究单个分子。今天的每一位化学家都应该知道激光的工作原理,并了解它们产生的光的独特性质。要了解激光的工作原理,我们首先必须了解电子激发原子或分子衰变回到基态的各种途径。激光的产生取决于这些激发原子或分子衰变回到基态的速率。因此,我们将讨论爱因斯坦开发的速率方程模型,该模型描述了原子能级之间的光谱跃迁动力学。我们将看到,在考虑制造激光器之前,我们必须了解两个以上原子能级之间的跃迁。然后,我们将讨论激光器设计的一般原理,并描述研究化学实验室中使用的一些激光器。特别是,我们将通过详细检查氦氖激光器来说明激光器的工作原理。以氯化碘 ICl(g) 的激光光谱为例,我们将看到激光器可以解析使用传统灯式光谱仪无法观察到的光谱特征。然后,我们将研究光化学反应,即 ICN(g) 的光诱导解离或光解离。我们将了解到,可以使用输出飞秒(1 o-ts s)光脉冲的激光器测量 I-CN 键在吸收到解离电子态后断裂所需的时间。 5 91