图 1. 2021 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2021 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2021 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2021 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州的石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................28 图 12. 1990 年至 2021 年纽约州的 CH 4 总排放量(AR5 GWP 20)....................................................................................................................108 图 13. 1990 年至 2021 年纽约州的上游 CH 4 排放量(AR5 GWP 20)....................................................................................................108 图 14. 1990 年至 2021 年纽约州的中游 CH 4 排放量(AR5 GWP 20)....................................................................................................................109图 16. 2021 年下游、中游和上游 CH4 排放量占总排放量的百分比 ............................................................................................................. 111 图 17. 2021 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量(AR5 GWP 20) ............................................................................................. 112 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 113 图 19. 2021 年纽约州各县 CH4 排放量地图(AR5 GWP 20) ............................................................................................. 124 图 21. 帝国大厦发展公司确定的纽约州经济区域.... 131 图 22.2021 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20) ...... 132 图 23. 使用 AR5 GWP 20 CH 4 换算因子比较 1990 年和 2021 年纽约州源类别 CH 4 排放量 ................................................................................................................................ 134 图 24. 图 ES-11 的复制品(EPA 2023),显示能源和其他部门排放的时间序列趋势 ................................................................................................................................ 135 图 25. 包括最佳估计值和上下限的总排放量(AR5 GWP 20) ................................................................................................................................................ 141 图 26. 包括上限和下限的上游排放量(AR5 GWP 20) ............................................................................................................................................. 142 图 28. 包括上限和下限的下游排放(AR5 GWP 20)...................................................................................................... 142
临界维度(CD)控制在半导体行业至关重要,并且随着光刻限制不断推动以达到小于10 nm的技术节点而变得更具挑战性。为了确保过程的质量和控制,有必要探索新的计量技术。从这个意义上讲,临界小角度X射线散射(CDSAXS)已被确定为确定具有子纳米准确精度的线光栅的平均形状的潜在候选者。在本文中,我们将CDSAXS结果基于光学关键维度(OCD),临界尺寸扫描电子显微镜(CDSEM)和透射电子显微镜(TEM)测量,以前从制造线的工业计量工具和表征实验室中收集的先前从工业计量工具中收集的测量值。重点放在用于CDSAXS的模型以及如何改进的模型上。我们讨论了所有这些多尺度和多物理技术之间的差异,并质疑我们比较它们的能力。
Jun 13, 2024 — 功能材料事业部拥有先进的火法和湿法冶金工艺,采用侧吹炉工. 艺、真空蒸馏工艺、以及溶剂萃取、离子交换、电解等先进工艺,回收. 和精炼各种含稀散金属固体、浆料和溶液。
5 点排放和逸散排放的显著源被认为是一般源,例如,它们可能导致给定大气污染区内一种或多种下列污染物的净排放量增加:PM10:每年 50 吨 (tpy);NOx:500 tpy;SO2:500 tpy;或通过国家立法确定;以及等效热输入为 50 MWth 或更大的燃烧源。无机和有机污染物排放的显著性应根据具体项目确定,同时考虑污染物的毒性和其他特性。 6 美国环境保护署,《防止空气质量显著恶化》,40 CFR Ch. 1 Part 52.21。确定显著排放的其他参考资料包括欧洲委员会。2000 年。“EPER 实施指导文件。”http://ec.europa.eu/environment/ippc/eper/index.htm;和澳大利亚政府。 2004 年。“国家污染物清单指南”。http://www.npi.gov.au/handbooks/pubs/npiguide.pdf 7 世界卫生组织 (WHO)。《空气质量指南全球更新》,2005 年。PM24 小时值为第 99 个百分位数。 8 鉴于需要分阶段实现建议的指南,因此提供了中期目标。 9 环境空气质量标准是通过国家立法和监管程序制定和发布的环境空气质量水平,环境质量指南是指主要通过国家立法和监管程序制定的环境质量水平。
5 点排放和逸散排放的显著源被认为是一般源,例如,它们可能导致给定大气污染区内一种或多种下列污染物的净排放量增加:PM10:每年 50 吨 (tpy);NOx:500 tpy;SO2:500 tpy;或通过国家立法确定;以及等效热输入为 50 MWth 或更大的燃烧源。无机和有机污染物排放的显著性应根据具体项目确定,同时考虑污染物的毒性和其他特性。 6 美国环境保护署,《防止空气质量显著恶化》,40 CFR Ch. 1 Part 52.21。确定显著排放的其他参考资料包括欧洲委员会。2000 年。“EPER 实施指导文件。”http://ec.europa.eu/environment/ippc/eper/index.htm;和澳大利亚政府。 2004 年。“国家污染物清单指南”。http://www.npi.gov.au/handbooks/pubs/npiguide.pdf 7 世界卫生组织 (WHO)。《空气质量指南全球更新》,2005 年。PM24 小时值为第 99 个百分位数。 8 鉴于需要分阶段实现建议的指南,因此提供了中期目标。 9 环境空气质量标准是通过国家立法和监管程序制定和发布的环境空气质量水平,环境质量指南是指主要通过国家立法和监管程序制定的环境质量水平。
5 点排放和逸散排放的显著源被认为是一般源,例如,它们可能导致给定大气污染区内一种或多种下列污染物的净排放量增加:PM10:每年 50 吨 (tpy);NOx:500 tpy;SO2:500 tpy;或通过国家立法确定;以及等效热输入为 50 MWth 或更大的燃烧源。无机和有机污染物排放的显著性应根据具体项目确定,同时考虑污染物的毒性和其他特性。 6 美国环境保护署,《防止空气质量显著恶化》,40 CFR Ch. 1 Part 52.21。确定显著排放的其他参考资料包括欧洲委员会。2000 年。“EPER 实施指导文件。”http://ec.europa.eu/environment/ippc/eper/index.htm;和澳大利亚政府。 2004 年。“国家污染物清单指南”。http://www.npi.gov.au/handbooks/pubs/npiguide.pdf 7 世界卫生组织 (WHO)。《空气质量指南全球更新》,2005 年。PM24 小时值为第 99 个百分位数。 8 鉴于需要分阶段实现建议的指南,因此提供了中期目标。 9 环境空气质量标准是通过国家立法和监管程序制定和发布的环境空气质量水平,环境质量指南是指主要通过国家立法和监管程序制定的环境质量水平。
页次壹、开会程序..................................................... 1 贰、开会议程..................................................... 2 叁、选举事项..................................................... 3 肆、其他议案..................................................... 3 伍、临时动议..................................................... 3 陆、散会......................................................... 3 附件ㄧ、 董事(含独立董事)候选人名单............................... 4 二、 董事候选人兼任其他公司之职务明细表........................ 6 附录ㄧ、 公司章程................................................. 8 二、 股东会议事规则........................................... 14 三、 董事选任程序............................................. 22 四、 全体董事持股情形......................................... 25
孟德尔易感性分枝杆菌病 (MSMD) 是一组由大约 21 种基因缺陷引起的遗传性先天性免疫缺陷。干扰素-γ 受体 1 型 (IFNGR1) 缺陷是此类疾病中第一个被描述的疾病。IFNGR1 可导致细胞对干扰素-γ (IFN- γ ) 的反应性丧失。分枝杆菌感染是由于编码 IFNGR1 链的基因突变而发生的,导致细胞对 II 型 IFN- γ 的反应性丧失,而 II 型 IFN- γ 在控制细胞内细菌方面起着重要作用。MSMD 的特点是对环境分枝杆菌和低毒力分枝杆菌(如卡介苗 (BCG) 疫苗株)的敏感性增加。如果患者在接种 BCG 疫苗后出现临床表现,则需要谨慎及时地进行诊断和治疗。可以通过基因研究进行诊断,骨髓移植仍然是治疗的主要手段。
摘要:有人提出,成人大脑的功能特征(所有这些都是在生命早期形成的)可能会影响大脑对阿尔茨海默病 (AD) 的易感性。我们之前对衰老加速的 OXYS 大鼠(一种散发性 AD 模型)的研究结果支持这一假设。在这里,为了阐明大脑成熟过程中出现的异常的分子遗传性质,我们分析了 OXYS 大鼠和 Wistar(对照)大鼠在大脑成熟的关键时期(P3 和 P10 岁;P:出生后天数)的前额皮质 (PFC) 和海马的转录组(RNA-seq 数据)。我们在两个大脑结构中发现了 1000 多个差异表达基因;功能分析表明神经元接触形成效率降低,这大概主要是由于线粒体功能缺陷所致。接下来,我们比较了从婴儿期到 AD 样病变进展阶段(共五个年龄段)大鼠 PFC 和海马中差异表达的基因。三种基因( Thoc3 、 Exosc8 和 Smpd4 )在整个生命周期中均在 OXYS 大鼠的两个脑区中表现出过度表达。因此,婴儿期 OXYS 大鼠脑中神经网络形成效率的降低可能是导致其出现 AD 样病变的原因。