全球能源需求快速增长与气候变化之间的矛盾是一个巨大的挑战,需要重大的科技创新。先进制造可以大大减少温室气体排放和污染,并缩短产品上市时间。增材制造是一种通过直接从计算几何模型逐层沉积材料来制造三维物体的过程,它在很大程度上消除了传统制造方法的设计和制造限制。作为一种新兴的变革性技术,增材制造技术已在多个能源领域显示出节能的潜在优势。为了进一步增加其在核能和可再生能源中的应用,需要进行基础研究以克服过程监控、尺寸精度和部件结构完整性方面的一些关键挑战。增材制造工艺及其产品的验证和鉴定对于满足各种能源生产、转换和存储系统中关键部件的高标准至关重要。在这篇综述文章中,我们总结了尖端增材制造技术的现状及其在核能、电池、燃料电池、石油和天然气领域的应用。我们还概述了充分发挥增材制造技术潜力所需的主要挑战和基础研究。本综述提供了通过应用创新的增材制造技术应对全球能源挑战的重要讨论和前景。
[1] E.H. Baalbergen, E. Moerlan, W.F.Lammen, P.D.Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] A.J.de Wit, W.F.Lammen, H.S.Timmermans, W.J.Vankan, D. Charbonnier, T. van der Laan, P.D.Ciampa (2019) 飞机供应链的协同设计方法:多级优化。NLR-TP-2019-202。[3] W.F.Lammen, P. Kupijai, D. Kickenweitz, T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。[4] E. Amsterdam, J.W.Wiegman, M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] F.P.Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020- 415。[6] F.P.Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] F.P.Grooteman, E. Lee, S. Jin, M.J. Bos (2019) 极限载荷系数降低。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[8] E. Amsterdam, F.P.Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。[9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳裂纹扩展速率的现象学模型。待提交。[10] W.J.Vankan, W.M.van den Brink, R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。[11] J.W.van der Burg, B.B.Prananta, B.I Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。[12] J. van Muijden, B.B.Prananta, R.P.G.Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans, B.B.Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。NLR-TP-2019-368。[15] L. Paletti, W.M.[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。[16] J.C. de Kruijk (2018) 使用机器人技术实现复合材料自动化制造可降低成本、交货时间和废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] W.M.van den Brink、R. Bruins、C.P.Groenendijk、R. Maas、P. Lantermans (2016) 复合热塑性水平稳定器扭力箱的纤维引导蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合格栅加固板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲会议上发表。[19] M.H.Nagelsmit、C. Kassapoglou、Z. Gürdal (2010) 一种用于提高损伤容限的新型纤维放置架构。NLR-TP-2010-626。[20] A. Clarke、R.J.C.Creemers, A. Riccio, C. Williamson (2005) 全复合材料耐损伤翼盒的结构分析与优化。NLR-TP-2005-478。
[1] EH Baalbergen、E. Moerlan、WF Lammen、PD Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] AJ de Wit、WF Lammen、HS Timmermans、WJ Vankan、D. Charbonnier、T. van der Laan、PD Ciampa (2019) 飞机供应链的协同设计方法:多层次优化。NLR-TP-2019-202。[3] WF Lammen、P. Kupijai、D. Kickenweitz、T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。 [4] E. Amsterdam、JW Wiegman、M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] FP Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020-415。[6] FP Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] FP Grooteman、E. Lee、S. Jin、MJ Bos (2019) 极限载荷系数降低。在 2019 年飞机结构完整性计划 (ASIP) 会议上发表。 [8] E. Amsterdam,FP Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。 [9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳中裂纹扩展速率的现象学模型。待提交。 [10] WJ Vankan、WM van den Brink、R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。 [11] JW van der Burg、BB Prananta、BI Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。 [12] J. van Muijden、BB Prananta、RPG Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans、BB Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。NLR-TP-2019-368。[15] L. Paletti、WM van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天中的增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。 [16] JC de Kruijk (2018) 使用机器人技术实现复合材料的自动化制造,降低成本、缩短交货时间和提高废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] WM van den Brink、R. Bruins、CP Groenendijk、R. Maas、P. Lantermans (2016) 复合材料热塑性水平稳定器扭力箱的纤维转向蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合材料格栅加筋板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲展会上发表。[19] MH Nagelsmit、C. Kassapoglou、Z.Gürdal (2010) 一种提高损伤容限的新型纤维铺放结构。NLR-TP-2010-626。[20] A. Clarke、RJC Creemers、A. Riccio、C. Williamson (2005) 全复合材料损伤容限翼盒的结构分析与优化。NLR-TP-2005-478。